首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Chemical modifications of the surface of Kevlar fiber were investigated as a means of improving fiber-matrix adhesion. The fiber surface was used as a polymerization support for interfacial polycondensation. Nylon-6,6 was successfully polymerized in this way. The grafted nylon was characterized by ESCA (electron spectroscopy for chemical analysis), DSC (differential scanning calorimetry), and extraction procedures. An increase of the transcrystalline layer thickness was observed through optical microscopy, indicating better fiber-matrix adhesion. Both plasma treated fibers having been submitted or not to chemical treatments were used as reinforcements for nylon-6,6 unidirectional composites. Improvement of the mechanical properties were related to better interfacial interactions due to grafted nylon chains.  相似文献   

2.
The effect of surface chemistry and rugosity on the interfacial adhesion between Bisphenol-A Polycarbonate and a carbon fiber surface subjected to surface treatment to add surface oxygen groups was investigated. The surface oxygen content of PAN based intermediate modulus IM7 carbon fibers was varied by an oxidative surface treatment. The oxygen content of the carbon fiber surface increased from 4 to 22% by changing the degree of surface treatment from 0 to 400% of nominal commercial surface treatment levels. The oxidative surface treatment also causes an increase in surface roughness by creating pores and fissures in the surface by removing carbon from the regions between the graphite crystallites. To decouple the effects of surface roughness and the surface oxides on the interfacial adhesion, the oxidized fiber surface was passivated via hydrogenation at elevated temperature. Thermal hydrogenation removes the oxides on the surface without significantly altering the surface topography. The results of interfacial adhesion tests indicate that an increase in the oxygen content of the fiber does not increase the fiber-matrix interfacial adhesion significantly. Comparing adhesion results between oxidized and hydrogen passivated fibers shows that the effect of the surface roughness on the interfacial adhesion is also insignificant. Overall, dispersive interactions alone appear to be the primary factor in adhesion of carbon fibers to thermoplastic matrices in composites.  相似文献   

3.
The quality of interfacial interaction is dictated by the surface chemistry of the carbon fibers and the composition of the matrix. The composition of polystyrene was modified by the addition of maleic anhydride (MAH) grafted polystyrene. The surface properties of the various matrix formulations were characterised by contact angle. Carbon fibers were modified by oxidation in nitric acid. The surface composition of the carbon fibers was characterized. The interaction between modified polystyrene and the carbon fibers was studied by single fiber pull-out tests. The best adhesion behavior was achieved between polystyrene containing grafted MAH and nitric acid oxidation carbon fibers. The addition of MAH-grafted polystyrene to the unmodified polystyrene caused the interfacial shear strength to increase. The apparent interfacial shear strength of this fiber-matrix combination allowed for the utilisation of 100% of the yield tensile strength of polystyrene.  相似文献   

4.
刘文川  纪锐 《硅酸盐学报》1995,23(3):336-341
采用碳布层叠然后用化学气相渗方法制备了C/SiC复合材料,这种材料纤维与基体间的界面是决策材料力学行为的重要因素,带有热解碳作为界面层的C/SiC材料,在断裂进表现出大范围的脱粘,纤维与周围的基体不同发生断裂,有大量的纤维拨出,断口类似毛刷,无界央层材料表现为脆性平面断口,裂纹直接通过纤维和基体向前扩展,没有发生脱粘。  相似文献   

5.
The interfacial properties between fibers and the matrix contribute to the overall properties in high performance composites. Plasma treatments (Ar, O2, CF4/O2, N2/H2) have been performed on carbon fibers to improve the fiber-matrix interaction. The treatment efficiency was checked by the single-fiber technique, while the surface chemistry and morphology were characterized by X-ray photoelectron spectroscopy (XPS), static secondary ion mass spectroscopy (SSIMS), and scanning electron microscopy (SEM). The O2- and N2/H2-plasma treatments proved most effective both for introducing oxygen-containing functionalities at the fiber surface and for improving the interfacial shear strength of carbon fiber/epoxy composites. A relationship between the oxygen concentration at the fiber surface and the interfacial shear strength is demonstrated.  相似文献   

6.
IM7 carbon fibers were surface treated in methane, ethylene, trifluoromethane and tetrafluoromethane plasmas. The surface chemical composition of the fibers was determined by X-ray photoelectron spectroscopy (XPS). The adhesion between as-received and plasma-treated carbon fibers and polyethersulfone (PES) and an epoxy resin was measured by the microbond pull-out test. XPS showed that the methane and ethylene plasmas deposited a thin layer of hydrocarbon on the fiber surface. The trifluoromethane plasma deposited a layer of fluorocarbon on the surface of the fibers. The tetrafluoromethane plasma etched the fibers and introduced a significant amount of fluorine on the surface. The microbond pull-out test results indicated that an etching plasma, such as the tetrafluoromethane plasma, improved the adhesion between carbon fibers and PES. These results are consistent with earlier work performed with ammonia plasma. The adhesion is believed to be due primarily to the differential thermal shrinkage between the fiber and the matrix. It was shown that in the case of a reactive matrix such as an epoxy resin, the fiber chemical composition plays a role in the fiber-matrix adhesion. However, this chemical effect is secondary to the cleaning effect of the surface treatment.  相似文献   

7.
The performance of carbon fiber-reinforced composites largely depends on the properties of the fiber-matrix interface. Here, to improve the interfacial strength properties of carbon fiber/epoxy composites, we doped different concentrations of Fe2O3/graphene nanosheets onto the interfacial region of the carbon fiber composites by nano-coating technology. With the aid of the magnetic field, the arrangement of nanosheets could be controlled in the interface. The nanosheets can be arranged on the carbon fiber surface parallel or perpendicularly with different concentrations. The tensile strength and interfacial shear strength of the modified fiber microcomposites had increased by 22.1 and 44.4% respectively with 1.0 mg/mL Fe2O3/graphene nanosheets. The results indicated that the Fe2O3/graphene nanosheets have an important influence on the carbon fibers and carbon fibers composites.  相似文献   

8.
Surface-induced transcrystallization in fibers has been reported in some advanced polymer composites. It is believed that transcrystalline interphase may affect stress transfer efficiency between the reinforcing fiber and the matrix. In this study, attempts were made to examine the effects of transcrystallinity on composite performance, particularly on fiber-matrix interfacial bond strength, and to investigate possible attributes of transcrystallization. Three polymer resins, poly(etherketoneketone) (PEKK), poly(etheretherketone) (PEEK), and poly(phenylenesulfide) (PPS), and four types of fiber, polyacrylonitrile (PAN)-based AU-4 (untreated AS-4) carbon, pitch-based carbon, poly (p-phenylene terephthalamide) (PPDT) aramid, and E-glass were used. It was found that PPDT aramid and pitch-based carbon fibers induce a transcrystalline interphase in all three polymers because of an epitaxial effect. Under certain conditions, transcrystallization was also observed in PAN-based carbon and E-glass fibers, which may be partially attributed to the thermal conductivity mismatch between the fiber and the matrix. Plasma treatment on fiber surface showed a negligible effect on inducing transcrystallization, whereas solution-coating of PPDT on the fiber surface showed a positive effect. The Microdebonding test, which measures the interfacial bond strength between the fiber and the matrix, consistently showed more than 40% increments for various single filament systems with transcrystalline interphase versus without. However, the effects of transcrystallinity on the interfacial bond strength appeared to decrease as the fiber content increased in composites.  相似文献   

9.
High-modulus carbon-fiber-reinforced thermoplastic composites typically fail at the interface due to poor adhesion between fiber and matrix. To increase interfacial strength, the research described herein focuses on modifying the fiber surface (via high-temperature acid treatment or zinc electrolysis) to facilitate chemical functional groups on the fiber that might increase fiber-matrix inter-actions. The thermoplastic matrix materials used in this study were random copolymers of ethylene and methacrylic acid in which the carboxyl groups in the methacrylic acid segments were neutralized with either sodium or zinc counterions. Mechanical tests were performed to determine the macroscopic effects of fiber pretreatment on the ultimate mechanical properties of the composites. Fabrication was designed such that fiber-matrix separation provides the dominant contribution to mechanical gracture. Composites containing fibers treated with nitric acid, or a mixture of nitric and sulfuric acids exhibit a 20 to 25 percent increase in transverse (tensile) fracture stress relative to composites fabricated with as-received fibers. Scanning electron microscopy of the fiber-matrix interface at fracture allows one to “zoom-in” and obtain qualitative details related to adhesion. Fracture surface micrographs of the above-mentioned acid-treated fiber-reinforced composites reveal an increase in the amount of matrix material that adhered to the fiber surface relative to the appearance of the fracture surface of composites fabricated with as-received fibers. The presence of acid functionality in the matrix, rather than the divalent nature of the zinc counterions, produces the largest relative enhancement of transverse (tensile) fracture stress in the above-mentioned composites containing surface-treated carbon fibers.  相似文献   

10.
Adhesion between graphite fibers and epoxy matrices is a necessary and sometimes controlling factor in achieving optimum performance. Manufacturers' proprietary fiber surface treatments promote adhesion without providing a basic understanding of the fiber surface properties altered through their use. This study has combined fiber surface chemistry, morphology, interfacial strength measurements and fracture characterization in order to elucidate the role of surface treatments. The results of this investigation lead to the conclusion that surface treatments designed to promote adhesion to epoxy matrix materials operate through a two-part mechanism. First, the treatments remove a weak outer fiber layer initially present on the fiber. Second surface chemical groups are added which increase the interaction with the matrix. Increases in fiber surface area are not an important factor in promoting fiber-matrix adhesion. In some cases the upper limit to fiber-matrix interfacial shear strength is the intrinsic shear strength of the fiber itself.  相似文献   

11.
In this work the effect of atmospheric plasma treatment on carbon fiber has been studied. The carbon fibers were treated for 1, 3 and 5 min with a He/O2 dielectric barrier discharge atmospheric pressure plasma. The fiber surface morphology, surface chemical composition and interfacial shear strength between the carbon fiber and epoxy resin were investigated using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and the single fiber composite fragmentation test. Compared to untreated carbon fibers, the plasma treated fiber surfaces exhibited surface morphological and surface composition changes. The fiber surfaces were found to be roughened, the oxygen content on the fiber surfaces increased, and the interfacial shear strength (IFSS) improved after the atmospheric pressure plasma treatment. The fiber strength showed no significant changes after the plasma treatment.  相似文献   

12.
This study is focused on the impact of oxygen plasma treatment on properties of carbon fibers and interfacial adhesion behavior between the carbon fibers and epoxy resin. The influences of the main parameters of plasma treatment process, including duration, power, and flow rate of oxygen gas were studied in detail using interlaminar shear strength (ILSS) of carbon fiber composites. The ILSS of composites made of carbon fibers treated by oxygen plasma for 1 min, at power of 125 W, and oxygen flow rate of 100 sccm presented a maximum increase of 28% compared to composites made of untreated carbon fibers. Furthermore, carbon fibers were characterized by scanning electron microscopy (SEM), tensile strength test, attenuated total reflectance Fourier transform infrared (ATR-FTIR), and Raman spectroscopy analyses. It was found that the concentration of reactive functional groups on the fiber surface was increased after the plasma modification, as well the surface roughness, which finally improved the interfacial adhesion between carbon fibers and epoxy resin. However, high power and long exposure times could partly damage the surface of carbon fibers and decrease the tensile strength of filaments and ILSS of treated fiber composites.  相似文献   

13.
Polypyrrole (PPy) was deposited onto carbon fibers via continuous electrochemical deposition (ECD). Composites of PPy-deposited carbon fiber and epoxy were prepared. The thermal expansion coefficients of these materials were determined using either a thermal mechanical analyzer or an imbeded strain gauge. The results show that PPy has a negative thermal expansion coefficient while carbon fiber and epoxy have positive thermal expansion coefficients. The resulting composite has a smaller thermal expansion coefficient, higher interlaminar shear stress and a smaller critical fiber length than the composite using untreated carbon fiber. This suggests that the deposition of PPy can effect an improvement in the fiber-matrix interfacial bonding of the composite.  相似文献   

14.
Adhesion between an electron-beam-cured Diglycidyl Ether of Bisphenol A (DGEBA) epoxy matrix and AS4 carbon fibers has been evaluated with the microindentation test method and compared with similar thermally cured materials. The results indicate that the absence of amine compounds and of high temperature treatment associated with thermally cured epoxy matrices are detrimental to fiber-matrix adhesion in electron-beam-cured epoxy matrices when measured by the microindentation test. Electron beam processing was not found responsible for any adsorption and/or deactivation of the irradiated carbon fiber surface as determined by surface analysis with X-ray Photoelectron Spectroscopy (XPS). Moreover, the relationship between electron-beam processing conditions (namely, dose and dose increment) with the resulting matrix properties and the adhesion to carbon fiber have revealed a strong dependency of fiber-matrix adhesion on the bulk matrix properties independent of the electron beam processing history. Undercured electron-beam-processed matrices exhibit higher adhesion to carbon fibers that can be explained by a higher matrix shear modulus.  相似文献   

15.
Adhesion between an electron-beam-cured Diglycidyl Ether of Bisphenol A (DGEBA) epoxy matrix and AS4 carbon fibers has been evaluated with the microindentation test method and compared with similar thermally cured materials. The results indicate that the absence of amine compounds and of high temperature treatment associated with thermally cured epoxy matrices are detrimental to fiber-matrix adhesion in electron-beam-cured epoxy matrices when measured by the microindentation test. Electron beam processing was not found responsible for any adsorption and/or deactivation of the irradiated carbon fiber surface as determined by surface analysis with X-ray Photoelectron Spectroscopy (XPS). Moreover, the relationship between electron-beam processing conditions (namely, dose and dose increment) with the resulting matrix properties and the adhesion to carbon fiber have revealed a strong dependency of fiber-matrix adhesion on the bulk matrix properties independent of the electron beam processing history. Undercured electron-beam-processed matrices exhibit higher adhesion to carbon fibers that can be explained by a higher matrix shear modulus.  相似文献   

16.
Gaurav Gupta 《Carbon》2005,43(7):1400-1406
A computational modeling study of texture formation in carbon-carbon composites based on carbon fibers and carbonaceous mesophase precursors is presented. The modeling predictions on texture formation and disclination structures are quantitatively validated with extensive experimental data. The number and type of disclinations displayed by the carbonaceous mesophase matrix is shown to be governed by the elasticity of the mesophase, the carbon fiber-mesophase interfacial energy, the size of the fibers, and positional arrangement of the fibers. The simulations provide new insights on the fundamental principles that govern texturing and disclination nucleation, and on how to control the structure of carbon-carbon composites through fiber concentration, fiber cross-section, and fiber-matrix interaction.  相似文献   

17.
The impact strength and rigidity of polypropylene composites can be significantly improved by application of short glass fibers instead of mineral fillers in elastomer-modified polypropylene. The properties of such composites are strongly dependent on the adhesive forces at the fiber-matrix interface. Poor adhesion results in interfacial fracture solely by fiber-matrix debonding, as evidenced by scanning electron microscopy on the fracture surfaces. This is accompanied by relatively low impact strengths. By contrast, increased adhesion leads to fracture not only by fiber-matrix debonding, but also by crack propagation through the elastomeric phase at the fiber surface. This mechanism is thought to be responsible for a remarkable increase of the impact strength. Appropriate compositions of polypropylene, glass fiber, and elastomer resulted in composite properties similar to, or even better than, those of a typical acrylonitrile-butadiene-styrene copolymer. The lengths of the fibers recovered from the test specimens were somewhat smaller than the critical fiber lengths as calculated by simple shear lag theory. The properties of the present composites should thus be regarded as minima, rather than as potential maxima. This suggests that current composites may be suitable for engineering applications.  相似文献   

18.
Interfacial adhesion between fiber and matrix has a strong influence on composite mechanical performance. To exploit the reinforcement potential of the fibers in advance composite, it is necessary to reach a deeper understanding on the relation between fiber surface treatment and interfacial adhesion. In this study, air plasma was applied to modify carbon fiber (CF) surface, and the capability of plasma grafting for improving the interfacial adhesion in CF/thermoplastic composite was discussed and also the mechanism for composite interfacial adhesion was analyzed. Results indicated that air plasma treatment was capable of increasing surface roughness as well as introducing surface polar groups onto CF; both chemical bonding and mechanical interaction were efficient in enhancements of interlaminate shear strength of CF/PPESK composite, while mechanical interaction has a dominant effect on composite interfacial adhesion than chemical bonding interaction. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

19.
Zircon matrix composites uniaxially reinforced with SiC fibers were fabricated with different interfacial properties by changing the fiber coatings. The phenomenon of crack interaction with fibers and/or fiber coatings and its dependence on the interfacial properties were studied using a microindentation technique. The influence of the fiber orientation relative to the crack extension direction on the crack-fiber interaction was also investigated. Crack deflection was observed at the fiber-matrix interface in composites having low interfacial shear strength, and the crack deflection was mostly single-sided, but double-sided deflection was also observed. Crack penetration into the fiber occurred in composites with high values of the interfacial shear strength. These observations were in general agreement with the theoretical predictions of the crack deflection behavior based on the bimaterial interfaces in ceramic composites, but additional observations were made on crack deflection at multiple fiber-matrix interfaces.  相似文献   

20.
Carbon fiber are surface treated by oxygen, argon, and styrene plasma to study the effects on fiber strength and interfacial shear strength with PPS resin. Interfacial shear strength between carbon fiber and high melting temperature thermoplastic resins is successfully measured with the microbond pull-out test with the help of scanning CO2 laser beam which solved the difficulties in preparing PPS microspheres. Tensile tests show that etching by oxygen plasma and deposition with plasma–PS increase strength of the fibers in some cases. ESCA spectra deconvolutions demonstrate that the improved interfacial strength is strongly related to the hydroxyl, ether, or aromatic groups on the surface. On the other hand, hydrocarbon segments are detrimental to the interface. Surface area and roughness have little influences on the interfacial strength of carbon fiber/PPS composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号