首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When adhesively bonded joints are subjected to large displacements, the small strain-small displacement (linear elasticity) theory may not predict the adhesive or adherend stresses and deformations accurately. In this study, a geometricaly non-linear analysis of three adhesively bonded corner joints was carried out using the incremental finite element method based on the small strain-large displacement (SSLD) theory. The first one, a corner joint with a single support, consisted of a vertical plate and a horizontal plate whose left end was bent at right angles and bonded to the vertical plate. The second corner joint, with a double support, had two plates whose ends were bent at right angles and bonded to each other. The final corner joint, with a single support plus angled reinforcement, was a modification of the first corner joint. The analysis method assumes that the joint members, such as the support, plates, and adhesive layers, have linear elastic properties. Since the adhesive accumulations (spew fillets) around the adhesive free ends have a considerable effect on the peak adhesive stresses, they were taken into account. The joints were analyzed for two different loading conditions: one loading normal to the horizontal plate plane Py and the other horizontal loading at the horizontal plate free edge Px. In addition, three corner joints were analyzed using the finite clement method based on the small strain-small displacement (SSSD) theory. In predicting the effect of the large displacements on the stress and deformation states of the joint members, the capabilities of both analyses were compared. Both analyses showed that the adhesive free ends and the outer fibres of the horizontal and vertical plates were subjected to stress concentrations. The peak stresses appeared at the slot corners inside the adhesive fillets and at the horizontal and vertical plate outer fibres corresponding to the locations where the horizontal and vertical adhesive fillets finished. The SSLD analysis predicted that the displacement components and the peak adhesive and plate stress components would show a non-linear variation for the loading condition Px, whereas the SSSD analysis showed smaller stress variations proportional to the applied load. However, both the SSLD and the SSSD analyses predicted similar displacement and stress variations for the loading condition Py. Therefore, the stress and deformation states of the joint members are dependent on the loading conditions, and in the case of large displacements, the SSSD analysis can be misleading in predicting the stresses and deformations. The SSLD analysis also showed that the vertical and horizontal support lengths and the angled reinforcement length played an important role in reducing the peak adhesive and plate stresses.  相似文献   

2.
In cases where adhesively bonded joints may experience large displacements and rotations whilst the strains remain small, although all joint members behave elastically the small strain-small displacement (SSSD) theory cannot correctly predict the stresses and deformations in the adhesive joint members. Previous studies have shown that the small strain-large displacement theory considering the non-linear effects of the large displacements in the stresses and deformations has to be used in the analysis of adhesively bonded joints. In this study, the geometrical non-linear analysis of an adhesively bonded double containment corner joint was carried out using the incremental finite element method based on the small strain-large displacement (SSLD) theory. The objective of the study was to determine the effects of the large displacements on the adhesive and adherend stresses of the corner joint. Therefore, the corner joint was analysed for two different loading conditions; a compressive applied load, Px, at the free end of the horizontal plate and one normal to the plane of the horizontal plate, Py. The plates, support and adhesive layer were assumed to have elastic properties. In practice, the adhesive accumulations, called spew fillets, arising around the adhesive free ends were taken into account in the analysis since their presence results in a considerable decrease in the peak stresses around the free ends of the adhesive. The SSLD and SSSD analyses showed that the stress concentrations occurred around the free end of the adhesive, thus at the adherend (slot) corners inside the right vertical and the lower horizontal adhesive fillets, and inside the left vertical and the upper horizontal adhesive fillets for the loading conditions Px and Py, respectively. In addition, the plate regions around the adherend (slot) free ends along the outer fibres of the vertical and horizontal plates undergo very high stress concentrations. The SSLD analysis predicted a non-linear effect in the displacement and stress variations at the critical adhesive and plate locations, whereas the SSSD analysis showed their variations were lower and proportional to the applied incremental load. This non-linear effect became more evident for the loading condition Px, whereas both analyses predicted very close displacement and stress variations in the adhesive fillets and in the horizontal plate for the loading condition Py. As a result, the geometrical non-linear behaviour of the corner joint is strictly dependent on the loading condition and the large displacements affect the stress and deformation states in the joint members, and result in higher stresses than those predicted by the SSSD theory.  相似文献   

3.
In this study, the geometrically non-linear analysis of an adhesively modified double containment corner joint was carried out using the incremental finite element method based on the small strain-large displacement (SSLD) theory. The plates, support, and adhesive layers were assumed to have linear elastic properties. The joint was analysed for two different loading conditions: one normal loading to the horizontal plate plane P y and one horizontal loading at the horizontal plate free edge P x . In addition, the small strain-small displacement (SSSD) analysis of this adhesive joint was also carried out in order to compare the capability of the two theories in predicting the effect of large displacements on the stress and deformation states of the joint members. Both analyses showed that stress and strain concentrations occurred around the adhesive free ends, corresponding to the vertical and horizontal slot free ends, and along the outer fibres of the horizontal and vertical plates. The peak stresses appeared at the slot corners inside the adhesive fillets and at the horizontal and vertical plate outer fibres corresponding to the two slot free ends. The variations of the Von Mises stresses at these critical adhesive and plate locations were evaluated versus increasing loads. The SSLD theory predicted an evident non-linear effect, as a result of the large displacements, on the stress variations for the loading P x , whereas this non-linear effect disappeared on the stresses for the loading P y ; thus, the stresses presented very close variations to those obtained by the SSSD theory. However, the SSSD theory predicted a lower stress variation proportional to the increasing load for both loading conditions. In the case of the loading P y , the right vertical adhesive fillet and both plates appeared as the most critical joint regions, whereas the lower horizontal fillet and both plates were determined as the most critical regions for the loading P x . The behaviour of all joint members towards the applied load is strictly dependent on the boundary and loading conditions. Finally, the SSSD theory may be misleading in the prediction of the stress and deformations, but the SSLD theory includes the non-linear effect of the large displacements and rotations and gives more realistic results, although it requires more computational effort. In addition, it was observed that the geometrical parameters, such as the support length, vertical support length, and vertical slot depth, had a considerable effect on the peak adhesive and plate stresses, depending on the loading condition.  相似文献   

4.
In this study, the geometrical non-linear analysis of an adhesively bonded modified double containment comer joint, which is presented as an alternative to previous comer joints, was carried out using the incremental finite element method based on the small strain-large displacement (SSLD) theory. The analysis method assumes the joint members such as the support, plates, and adhesive layers to have linear elastic properties. Since the adhesive accumulations (spew fillets) around the adhesive free ends have an important effect on the peak adhesive stresses, their presence was taken into account by idealizing them as triangular in shape. The joint was analysed for two different loading conditions: one load normal to the horizontal plate plane, Py, and one load horizontal at the horizontal plate free edge, Px. Finally, small strain-small displacement (SSSD) analysis of the joint was carried out and the results of both analyses were compared in order to determine the capability of the two theories in predicting the effects of large displacements on the stress and deformation states in the joint members. Both analyses showed that the peak stress values appeared at the slot comers inside the adhesive fillets and at the upper and lower longitudinal fibres (top and bottom longitudinal surfaces) of the horizontal and vertical plates corresponding to the horizontal and vertical slot free ends. In the case of the load Py, the right vertical adhesive fillet and both plates were the most critical joint regions, whereas the lower horizontal fillet and both plates were determined to be the most critical regions for the load Px. The SSLD theory predicted a non-linear effect on the variations of the displacement and stress components at these critical adhesive and plate locations for the load Px, whereas the stress components at the critical adhesive locations presented variations very close to those determined by the SSSD theory for the load Py, but this non-linear effect appeared on the displacement and stress variations at the critical locations of both plates. In addition, the SSSD theory predicted that the displacement and stress components would have lower variations proportional to the increasing load for both loading conditions. The stress and deformation states of all joint members are strictly dependent on the boundary and loading conditions. In addition, whereas the SSSD theory may be misleading for some loading conditions, the SSLD theory gives more realistic results, since it takes into account the non-linear effect of large displacements and rotations.  相似文献   

5.
Adhesive joints consist of adherends and an adhesive layer having different thermal and mechanical properties. When they are exposed to uniform thermal loads the mechanical-thermal mismatches of the adherends and adhesive layer result in uniform but different thermal strain distributions in the adhesive and adherends. The thermal stresses arise near and along the adherend-adhesive interfaces. The present thermal stress analyses of adhesively bonded joints assume a uniform temperature distribution or a constant temperature imposed along the outer boundaries of adhesive lap joints. This paper outlines the thermal analysis and geometrically non-linear stress analysis of adhesive joints subjected to different plate edge conditions and varying thermal boundary conditions causing large displacements and rotations. In addition, the geometrically non-linear thermal stress analysis of an adhesively bonded T-joint with single support plus angled reinforcement was carried out using the incremental finite element method, which was subjected to variable thermal boundary conditions, i.e. air streams with different temperatures and velocities parallel and perpendicular to its outer surfaces. The steady state heat transfer analysis showed that the temperature distribution through the joint members was non-uniform and high heat fluxes occurred inside the adhesive fillets at the adhesive free ends. Based on the geometrically non-linear stress analysis of the T-joint bonded to both rigid and flexible bases for different plate edge conditions, stress concentrations were observed at the free ends of adhesive-adherend interfaces and inside the adhesive fillets around the adhesive free ends, and the horizontal and vertical plates also experienced considerable stress distributions along outer surfaces. In addition, the effect of support length on the peak thermal adhesive stresses was found to be dependent on the plate edge conditions, when a support length allowing moderate adhesive stresses was present.  相似文献   

6.
Structures consisting of single or more materials, such as adhesive joints, may undergo large displacements and rotations under reasonably high loads, although all materials are still elastic. The linear elasticity theory cannot predict correctly the deformation and stress states of these structures, since it ignores the squares and products of partial derivatives of the displacement components with respect to the material coordinates. When these derivatives are not small, these terms result in a non-linear effect called geometrical non-linearity. In this study, the geometrically non-linear stress analysis of an adhesively bonded T-joint with double support was carried out using the incremental finite element method. Different T-joint configurations bonded to a rigid base and to a flexible base were considered. For each configuration, linear and geometrically non-linear stress analyses of the T-joint were carried out and their results were compared for different horizontal and vertical plate end conditions. The geometrically non-linear analysis showed that the large displacements had a considerable effect on the deformation and stress states of both adherends and the adhesive layer. High stress concentrations were observed around the adhesive free ends and the peak adhesive stresses occurred inside the adhesive fillets. The adherend regions corresponding to the free ends of the adhesive–plate interfaces also experienced stress concentrations. In addition, the effects of the support length on the peak adhesive and adherend stresses were investigated; increasing the support length had a considerable effect in reducing the peak adhesive and adherend stresses.  相似文献   

7.
In this study, stress and stiffness analyses of adhesively bonded tee joints with a single support plus angled reinforcement were carried out using the finite element method. It was assumed that the adhesive had linear elastic properties. In actual bonded joints, some amount of adhesive, called the spew fillet, accumulated at the free ends of the adhesive layer; therefore, the presence of the adhesive fillet at the adhesive free ends was taken into account. The tee joints were analysed for two boundary conditions: a rigid base and a flexible base. In addition, each boundary condition was analysed for four loading conditions: tensile, compressive, and two side loadings. The stress analysis showed that both side loading conditions resulted in higher stress levels in the joint region in which the vertical plate and supports are bonded to each other, as well as in the adhesive layer in this region for both rigid and flexible base boundary conditions. In adhesively bonded joints, the joint failure is expected to initiate in the adhesive regions subjected to high stress concentrations; therefore, the peak adhesive stresses were evaluated in these critical regions. In the case of the rigid base, the peak adhesive stresses occurred at the corner of the vertical plate, which was bent at right angles, for the tensile and compressive loading conditions, and in the adhesive fillet at the upper free end of the vertical adhesive layer-vertical support interface for both the left and the right side loading conditions. However, in case of the flexible base, the peak adhesive stresses occurred in the adhesive fillet at the right free end of the horizontal adhesive layer-horizontal support interface for the tensile, compressive, and the right side loading conditions, and in the vertical adhesive fillet at the upper free end of the vertical adhesive layer-vertical support interface for the left side loading condition. Furthermore, the adhesive stresses showed a nonlinear variation in the direction of the adhesive thickness for all boundary and loading conditions. The left side loading condition, among the present loading conditions, which results in the highest adhesive stresses is the most critical loading condition for both boundary conditions. The effects of horizontal and vertical support lengths on the peak adhesive stresses and on the joint stiffness were also investigated and the appropriate support dimensions relative to the plate thickness were determined based on the stress and stiffness analyses.  相似文献   

8.
In this study, the stress and stiffness analyses of corner joints with a single corner support, consisting of two plates, one of which plain and the other bent at right angles, have been carried out using the finite element method. It was assume that the plates and adhesive had linear elastic properties. Corner joints without a fillet at the free ends of the adhesive layer were considered. The joint support was analysed under three loading conditions, two linear and one bending moment. In the stress analysis, it was found that for loading in the y-direction and by bending moment, the maximum stresses occurred around the lower end of the vertical adhesive layer/ vertical plate interface; for loading in the x-direction, the maximum stresses occurred around the right free end of the horizontal adhesive layer/vertical plate interface. The effects of upper support length, support taper length and adhesive thickness on the maximum stresses have been investigated. Since the peel stresses are critical for this type of joint, a second corner joint with double corner support (i.e., one in which the horizontal plate is reinforced by a support that is an extension of the vertical plate) was investigated which showed considerable decreases in the stresses, particularly peel stresses. A third type of corner joint with single corner support plus an angled reinforcement member was investigated as an alternative to the previous two configurations. It was found that increasing the length and particularly the thickness of the angled reinforcement reduced the high peel stresses around the lower free end of the adhesive/vertical plate interface, but resulted in higher compressive stresses. In the stiffness analysis, the effects of the geometry of the joints, relative stiffness of adhesive/adherends and adhesive thickness were investigated under three loading conditions. For three types of corner joint, results were compared and recommended designs were determined based on the overall static stiffness of the joints and on the stress analysis.  相似文献   

9.
When an adhesively bonded joint is exposed to a high environmental temperature, the tensile load capability of the adhesively bonded joint decreases because the elastic modulus and failure strength of the adhesive decrease. In this paper, the elastic modulus and failure strength of the adhesive as well as the tensile load capability of the tubular single lap adhesively bonded joint were experimentally and theoretically investigated with respect to the volume fraction of filler and the environmental temperature. Two types of fillers - Al2O3 (alumina) and chopped fiber E glass - were used. From the experiment, it was found that the elastic modulus and failure strength of the adhesive increased in accordance with the increase of volume fraction of the filler and decreased with the environmental temperature rise. It was also found that the tensile load capability of the tubular single lap adhesively bonded joint decreased as the environmental temperature increased; however, it had no correlation with the volume fraction of filler because of the effect of the fabrication thermal residual stresses generated by the CTE difference between the adherend and adhesive.  相似文献   

10.
The strength and lifetime of adhesively bonded joints can be significantly improved by reducing the stress concentration at the ends of overlap and distributing the stresses uniformly over the entire bondline. The ideal way of achieving this is by employing a modulus graded bondline adhesive. This study presents a theoretical framework for the stress analysis of adhesively bonded tubular lap joint based on a variational principle which minimizes the complementary energy of the bonded system. The joint consists of similar or dissimilar adherends and a functionally modulus graded bondline (FMGB) adhesive. The varying modulus of the adhesive along the bondlength is expressed by suitable functions which are smooth and continuous. The axisymmetric elastic analysis reveals that the peel and shear stress peaks in the FMGB are much smaller and the stress distribution is more uniform along its length than those of mono-modulus bondline (MMB) adhesive joints under the same axial tensile load. A parametric evaluation has been conducted by varying the material and geometric properties of the joint in order to study their effect on stress distribution in the bondline. Furthermore, the results suggest that the peel and shear strengths can be optimized by spatially controlling the modulus of the adhesive.  相似文献   

11.
Employing a functionally graded adhesive the efficiency of adhesively bonded lap joints can be improved significantly. However, up to now, analysis approaches for planar functionally graded adhesive joints are still not addressed well. With this work, an efficient model for the stress analysis of functionally graded adhesive single lap joints which considers peel as well as shear stresses in the adhesive is proposed. Two differential equations of the displacements are derived for the case of an axially loaded adhesive single lap joint. The differential equations are solved using a power series approach. The model incorporates the nonlinear geometric characteristics of a single lap joint under tensile loading and allows for the analysis of various adhesive Young׳s modulus variations. The obtained stress distributions are compared to results of detailed Finite Element analyses and show a good agreement for several single lap joint configurations. In addition, different adhesive Young׳s modulus distributions and their impact on the peel and shear stresses as well as the influence of the adhesive thickness are studied and discussed in detail.  相似文献   

12.
In this study, the stresses in adhesive-bonded tee joints, in which a right-angled plate is bonded to a rigid plate with an adhesive, have been analysed with a finite element method. It was assumed that the adhesive and adherends had linear elastic properties. The tee joint was analysed under three loading conditions, two linear and one bending moment. The stress distributions in the joint area are given by stress contours and XY plots under the three load conditions. It was found from the results that high stress concentrations occur in the inside corner of the angle plate for loading in the x-direction (Px) and under bending moment (M), this suggesting that failure would not occur in the bonded joint. However, for loading in the y-direction (Py), the maximum normal stresses are concentrated at the left free end of the adhesive layer in the joint, and the first failure may be expected at this edge. Since the geometry of the joints affects the analysis and design of such joints, the influences on the stress distributions of the overlap length, adhesive thickness and adherend thickness were investigated. Practical experiments were carried out and it was found that experimental results were in good agreement with those of the finite element analysis.  相似文献   

13.
Due to their many advantages, adhesively bonded joints are widely used to join components in composite structures. However, premature failure due to debonding and peeling of the joint is the major concern for this technique. Existing analytical models suffer from two major drawbacks: 1) not satisfying zero-shear stress boundary conditions at the adhesive layer’s free edges[1] and 2) failure to distinguish the peel stress along two adherend/adhesive interfaces[2]. In this study, we develop a novel three parameter elastic foundation (3PEF) model to analyze a representative adhesively bonded joint, the symmetric double-lap joint, which is believed to have relatively low peel stresses. Explicit closed-form expressions of shear and peel stresses along two adhesive/adherend interfaces are yielded. This new model overcomes the existing model’s major drawbacks by satisfying all boundary conditions and predicting various peeling stresses along two adherend/adhesive interfaces. It not only reaches excellent agreement with existing solutions and numerical results based on finite element analysis but also correctly predicts the failure mode of an experimentally tested double-lap joint. This new model therefore reveals the peel stresses’ significant role in the failure of the double-lap joint, but the classical 2PEF model cannot create it.  相似文献   

14.
An analysis is presented that predicts shear and peel stresses in an adhesively bonded single lap joint having general asymmetric configuration. The single lap joint is under tension loading together with moments induced by geometric eccentricity. Because these eccentricity moments are the key elements of this analysis, a general relationship between the eccentricity moments and simple geometric moments has been determined with the aid of finite element analysis (FEA). Example calculations show that the shear- and peel-stress profiles from the closed-form model are well matched to FEA results except in the small regions near the free ends of the joints, because of the shear lag basis of the model. For asymmetric joints, the model predictions are more accurate for the case of modulus eccentricity than thickness eccentricity. Elastic-limit load predictions accounting for both shear and peel stress in the adhesive have been used to find optimal joint configurations between asymmetric adherends.  相似文献   

15.
Thermal–structural coupling nonlinear finite element analyses are conducted in this paper to determine three-dimensional stresses of a composite tee joint, which is formed when a right angled plate is adhesively bonded to a base plate at elevated temperature. The von-Mises stresses of the adhesive layer of the tee joint with three different laminate stacking sequences viz. unidirectional [0]8, cross-ply [(0/90)s]2, and angle-ply [(+45/?45)s]2 laminates have been evaluated when the tee joint is subjected to an out-of-plane loading through the right angled plate in addition to an elevated temperature applied at the undersurface of the base plate. The effects of laminate stacking sequence and temperature on von-Mises stresses have been investigated in this paper. The effects of the coefficient of thermal expansion and thermal conduction of the adhesive layer on von-Mises stresses have also been studied. Conclusions about the stresses of the composite tee joint with different stacking sequence, different coefficient of thermal expansion, and different thermal conduction of the adhesive layer are drawn.  相似文献   

16.
Rubber-modified epoxy adhesives are used widely as structural adhesive owing to their properties of high fracture toughness. In many cases, these adhesively bonded joints are exposed to cyclic loading. Generally, the rubber modification decreases the static and fatigue strength of bulk adhesive without flaw. Hence, it is necessary to investigate the effect of rubber-modification on the fatigue strength of adhesively bonded joints, where industrial adhesively bonded joints usually have combined stress condition of normal and shear stresses in the adhesive layer. Therefore, it is necessary to investigate the effect of rubber-modification on the fatigue strength under combined cyclic stress conditions. Adhesively bonded butt and scarf joints provide considerably uniform normal and shear stresses in the adhesive layer except in the vicinity of the free end, where normal to shear stress ratio of these joints can cover the stress combination ratio in the adhesive layers of most adhesively bonded joints in industrial applications.

In this study, to investigate the effect of rubber modification on fatigue strength with various combined stress conditions in the adhesive layers, fatigue tests were conducted for adhesively bonded butt and scarf joints bonded with rubber modified and unmodified epoxy adhesives, wherein damage evolution in the adhesive layer was evaluated by monitoring strain the adhesive layer and the stress triaxiality parameter was used for evaluating combined stress conditions in the adhesive layer. The main experimental results are as follows: S–N characteristics of these joints showed that the maximum principal stress at the endurance limit indicated nearly constant values independent of combined stress conditions, furthermore the maximum principal stress at the endurance limit for the unmodified adhesive were nearly equal to that for the rubber modified adhesive. From the damage evolution behavior, it was observed that the initiation of the damage evolution shifted to early stage of the fatigue life with decreasing stress triaxiality in the adhesive layer, and the rubber modification accelerated the damage evolution under low stress triaxiality conditions in the adhesive layer.  相似文献   

17.
The general elastic plane strain problem of adhesively bonded structures which consist of two different adherends is considered. To facilitate a truly general approach the adhesive joint is modelled as an adherend-adhesive sandwich with any combination of tensile, shear and moment loading being applied at the ends of both adherends. A full elastic analysis is presented which calculates the adhesive shear and tensile stresses in the overlap region, this analysis has been validated for a range of load cases using a finite element program. Basic design approaches are outlined and explicit expressions are developed which enable the simple evaluation of the stress distributions in the adhesive overlap. Simplified two parameter design formulae are also produced which accurately describe the peak stresses at the ends of the adhesive overlap in both the transverse and longitudinal shear directions. In all of the analyses the adherends are assumed to behave as linear elastic cylindrically bent plates with the adhesive forming an elastic interlayer between them. In the simplified analyses only one component of adhesive stress is considered, while in the full elastic analysis two components of stress are considered with a consequent increase in the complexity of the required solution method, but also an increase in accuracy over the simplified analyses for a wider range of joint configurations.  相似文献   

18.
This study comprises the stress and stiffness analyses of a second type of modified double containment corner joint which is presented as an alternative to two previous designs in order to reduce the effect of bending moment on the adhesive stresses. Plates are bonded at a right angle into slots of a corner support and the vertical slot depth is kept as large as possible in order to produce a joint which is stiffer and sustainable to high loads, provided that high stress concentration regions are under compression, and to obtain savings of the corner joint volume. The analyses were carried out using the finite element method and assuming that the adhesive, plates, and corner support had linear-elastic properties. Since the geometry of the adhesive free end has an important effect on the high adhesive stresses, the adhesive spew fillet arising from the applied pressure to provide the physical contact between the adhesive and plates was taken into account. In order to show the effect of boundary and loading conditions on the stresses and the overall joint stiffness, the joint was analysed for three loading conditions: two linear and a bending moment. It was found that the loading in the normal direction to the horizontal plate plane at its free end was the most critical and that maximum stress concentrations occurred around the adhesive free ends. A detailed study of adhesive stresses showed that the peak adhesive stresses occurred at the lower free end of the left vertical adhesive layer-slot interface for this loading condition and bending moment, respectively, and at the lower free end of the right vertical adhesive layer-slot interface for the loading condition in another direction. In addition, the effects of geometrical dimensions of the corner support, such as the horizontal and vertical support lengths, slot depth, and support thickness, on the peak adhesive stresses and on the overall joint stiffness were investigated and it was found that whereas the support lengths had a considerable effect, the effect of the slot depth and support thickness was negligible. The dimensions of the corner support were determined relative to the plate thickness based on the results.  相似文献   

19.
The use of adhesively bonded joints is often limited by a lack of reliable models able to accurately predict their behaviour in industrial applications, in which the stress distribution is often complex. The mechanical behaviour of an adhesive in a bonded joint is often heavily dependent on its stress state (i.e., the tensile–shear combinations). Thus, a large experimental database is required to accurately represent the complex behaviour of an adhesive in a bonded joint. On the one hand, the initial yield surface (initial elastic limit) often has to be described taking into account the two stress invariants, hydrostatic stress and von Mises equivalent stress, and on the other hand the non-linear behaviour of the adhesive is also quite complex to model. However, the mechanical response of adhesively bonded joints often presents quite large stress concentrations; thus, the analysis of experimental tests is made particularly difficult. Obtaining reliable experimental results makes it possible to contribute to optimization of an adhesive in a bonded joint. This paper presents comparisons between results of different experimental tests (with bulk and bonded joints), some of them are designed to greatly limit the edge effects. Results are presented for two adhesives under proportional monotonic loadings. The two adhesives have very different behaviours (a ductile adhesive and a brittle adhesive) and two different surface preparations of aluminium substrates (a mechanical preparation and a chemical preparation recommended by the adhesive manufacturer) were studied.  相似文献   

20.
A novel three-parameter, elastic foundation model is proposed in this study to analyze interface stresses of adhesively bonded joints. The classical two-parameter, elastic foundation model of adhesive joints models the adhesive layer as a layer of normal and a layer of shear springs. This model does not satisfy the zero-shear-stress boundary conditions at the free edges of the adhesive layer due to the inherent flaw of the two-parameter, elastic foundation model, which violates the equilibrium condition of the adhesive layer. To eliminate this flaw, this study models the adhesive layer as two normal spring layers interconnected by a shear layer. This new three-parameter, elastic foundation model allows the peel stresses along the two adherend/adhesive interfaces of the joint to be different, and therefore, satisfies the equilibrium condition of the adhesive layer. This model regains the missing “degree of freedom” in the two-parameter, elastic foundation model of the adhesive layer by introducing the transverse displacement of the adhesive layer as a new independent parameter. Explicit closed-form expressions of interface stresses and beam forces are obtained. The new model not only satisfies all boundary conditions, but also predicts correctly which interface has the strongest stress concentration. The new model is verified by continuum models existing in the literature and finite element analysis. The new three-parameter, elastic foundation model provides an effective and efficient tool for analysis and design of general adhesive joints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号