首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
研制了一种新型全方位轮式移动机器人,该机器人主要由三个特殊的轮式结构—MY轮组成.MY轮利用球体的运动原理,将球体分为接触区和非接触区,利用两球体的接触区与非接触区的相互补充实现了万向轮的功能.两部分球体的被动旋转轴成45度交叉布置,实现了与地面的连续接触;同时该结构也增加了万向轮的强度.对轮式移动机构的运动学分析和仿真证明了该机构能够实现全方位移动.机器人的运动实验也证明了该万向轮机构不仅能够实现全方位运动,而且还能够跨越障碍物.  相似文献   

3.
本文针对全方位移动机器人轨迹追踪中的摩擦补偿问题,提出了一种改进的非线性自抗扰控制器.首先建立了含有经典静态摩擦模型的全方位移动机器人动力学模型.其次,基于该模型设计非线性控制器和线性扩张状态观测器并给出了系统的稳定性分析.通过将模型已知项加入线性扩张状态观测器中得到摩擦力的估计值,并将估计值用于非线性控制器中摩擦补偿部分.为减小摩擦力对机器人低速运动轨迹追踪控制的影响,非线性控制器采用变增益控制器进行轨迹追踪控制.最后通过仿真结果验证本文提出控制器的有效性.  相似文献   

4.
MY wheel-II is one of switch omnidirectional wheel mechanisms. The omnidirectional mobile robot based on MY wheels-II is a switched non-linear system (i.e. discontinuous system). The aim of this paper is to propose a continuous modeling approach which can be employed to derive a continuous model from any given discontinuous robot dynamic model. This approach results in a continuous non-linear parameter varying (NLPV) model, and offers one solution for model-based control design. Firstly, our previously proposed average dynamic modeling approach is analyzed. We find that this modeling approach is effective only for a specific class of robot configurations. To overcome this problem, we first derive the switching conditions of MY wheel-II. Based on derived switching conditions, we then propose a simple continuous NLPV modeling approach. The new approach replaces the real discontinuous contact radius in the discontinuous dynamic model with an adaptive continuous curve. An illustrative example of the adaptive continuous curve design is provided. Both simulation and experimental results verify the effectiveness of the proposed NLPV modeling approach against the average modeling approach.  相似文献   

5.
In the recent past, mobile robots with high mobility have been developed actively. We have already proposed a holonomic and omnidirectional mobile robot using two active dual-wheel caster assemblies and also derived the kinematic models for the assembly and the mobile robot. This paper presents dynamic analysis and control for the mobile robot. The dynamic model has been derived based on the forces acting on the steering axis. Then a model-based resolved acceleration controller is constructed. The validity of the model and the effectiveness of the control system are confirmed by experiments using a prototype robot as well as simulations.  相似文献   

6.
In this paper, we describe a new type of holonomic and omnidirectional mobile robot using two driving assemblies, one of which consists of two independent driving wheel mechanisms, just like an active dual-wheel caster with an offset steered axis. Kinematic models of the wheel mechanism and a mobile robot with two driving assemblies are derived, and these models are applied to construct a feedback control system based on a resolved velocity control system for the robot. The effectiveness of the presented method is illustrated by some computer simulations. The prototype of a mobile robot platform using two driving assemblies, which can be controlled by a personal computer or a 3D joystick manipulated by human, is constructed.  相似文献   

7.
研究全景视觉机器人同时定位和地图创建(SLAM)问题。针对普通视觉视野狭窄, 对路标的连续跟踪和定位能力差的问题, 提出了一种基于改进的扩展卡尔曼滤波(EKF)算法的全景视觉机器人SLAM方法, 用全景视觉得到机器人周围的环境信息, 然后从这些信息中提取出环境特征, 定位出路标位置, 进而通过EKF算法同步更新机器人位姿和地图库。仿真实验和实体机器人实验结果验证了该算法的准确性和有效性, 且全景视觉比普通视觉定位精度更高。  相似文献   

8.
本文提出了一种基于梯度直方图的全景图像匹配算法, 并将该算法与蒙特卡罗定位方法相结合, 构建了一种基于全景视觉的移动机器人定位方法. 在分析所提出的匹配算法特点的基础上建立了系统的观测模型, 推导出粒子滤波中重要权重系数的计算方法. 该方法能够抵抗环境中相似场景对于定位结果的干扰, 同时能够使机器人从“绑架”中快速恢复. 实验结果证明该方法正确、有效.  相似文献   

9.
This paper proposes a new visual servoing quasi-min-max MPC algorithm for stabilization control of an omnidirectional wheeled mobile robot subject to physical and visual constraints. The visual servoing dynamics of the robot are modeled as the state-dependent linear error system with nonlinear control inputs of rotation and deflection velocities of wheels. The state-dependent linear error system is covered as linear parameters-varying models which is used to design the visual servoing quasi-min-max MPC controller. The actual control inputs of the robot are then computed by the solution of an inverse algebraic equation of the MPC actions. The recursive feasibility and stability of the new visual servoing MPC are ensured by some LMIs conditions. The performance and practicability of the visual servoing MPC are verified by some simulation and experiment results.  相似文献   

10.
A holonomic omnidirectional mobile robot with active dual-wheel caster assemblies is proposed as a robotic transport vehicle. With concern to the existence of sudden acceleration and other dynamical effects during maneuver, the tip-over instability monitoring is very important to prevent any unexpected injuries and property damage. This work presents the preventive method of the tip-over occurrence by estimating the tipping direction and stability metrics. The dynamical model of the omnidirectional mobile robot is derived to estimate the net force from the supporting reaction force at each wheel which is caused by the inertial and external forces. The direction of tipping and stability metric is estimated using moments stability measure. The performance of the tip-over prediction for an omnidirectional mobile robot with active dual-wheel assemblies is shown by the conducted simulations.  相似文献   

11.
This paper presents an output feedback tracking control scheme for a three-wheeled omnidirectional mobile robot, based on passivity property and a modified generalized proportional integral (GPI) observer. The proposed control approach is attractive from an implementation point of view, since only one robot geometrical parameter (i.e., contact radius) is required. Firstly, a nominal dynamic model is given and the passivity property is analyzed. Then the controller is designed based on passivity property and a modified GPI observer. The controller design objective is to preserve the passivity property of the robot system in the closed-loop system, which is conceptually different from the traditional model-based control methodology. Particularly, the designed control system takes full advantage of the robot natural damping. Therefore, only considerably small or non differential feedback is needed. In addition, theoretical analysis is given to show the closed-loop stability behavior. Finally, experiments are conducted to validate the effectiveness of the proposed control system design in both tracking and robustness performance.  相似文献   

12.
为提高移动机器人对特定轨迹的重复跟踪能力,提出了采用开闭环PD型迭代学习控制算法对移动机器人进行轨迹跟踪控制的方法。建立了包含外界干扰的非完整约束条件下的轮式移动机器人运动学模型,给出了系统的控制算法和控制结构。仿真结果表明,采用开闭环PD型迭代学习控制算法对轨迹跟踪是可行有效的,收敛速度优于其他迭代学习算法。  相似文献   

13.
This paper proposes a feedback control scheme for an omnidirectional holonomic autonomous platform, which is equipped with three lateral orthogonal-wheel assemblies. Firstly, the dynamic properties of the platform are studied, and a dynamic model suitable for the application of control is derived. The control scheme constructed is of the resolved-acceleration type, with PI and PD feedback. The control scheme was experimentally applied to an actual mobile robotic platform. The results obtained show that full omnidirectionality can be achieved with decoupled rotational and translational motions. Omnidirectionality is one of the principal requirements for mobile robots designed for health-care and other general-hospital services.  相似文献   

14.
三轮驱动移动机器人轨迹跟踪控制   总被引:1,自引:0,他引:1  
张国良  安雷  汤文俊 《计算机应用》2011,31(8):2293-2296
针对三轮驱动移动机器人在轨迹跟踪控制过程中运动不平滑的问题,建立了移动机器人在一定运动约束条件下的运动学模型。根据移动机器人位姿误差微分方程的描述,设计了基于后退时变状态反馈方法的移动机器人轨迹跟踪控制器。基于李雅普诺夫方法,对轨迹跟踪控制器的稳定性进行了分析,证明了该控制器能够保证闭环系统全局一致渐进稳定。仿真结果验证了运动学模型的正确性,以及轨迹跟踪控制器的有效性。  相似文献   

15.
根据MY轮的结构特点建立了由MY轮组成的全方位移动机器人的运动学模型.分析了由于轮结构带来的运动学特性.对全方位移动机器人在运动过程中的振动、控制及误差进行了深入研究.提出了通过优化接触距离及MY轮转速来减小机器人运动误差的控制方法.为获得优化结构,比较了三轮结构和四轮结构的运动学特性.同时应用正弦控制规律来合理控制MY轮的转动,改善了机器人的运动稳定性.仿真结果充分证明了分析的正确性.  相似文献   

16.
针对重心偏移情况下全方位下肢康复机器人的轨迹跟踪问题,提出一种H∞鲁棒解决策略.研究主要包括两方面内容:a)考虑重心变化情况下全方位移动下肢康复机器人的动态建模;b)提出一种自适应鲁棒H∞跟踪策略以消除重心变化所带来的影响.使用MATLAB对系统进行了仿真研究,仿真结果表明提出的鲁棒控制策略是正确有效的.  相似文献   

17.
机器人轨迹节点跟踪比较难,导致机器人实际轨迹偏离期望轨迹,所以设计基于视觉图像的全向移动机器人轨迹跟踪控制方法;构建全向移动机器人的运动学数学模型,以此确定机器人移动轨迹数学模型;以移动轨迹数学模型为基础,按照视觉图像划分标准对全向移动机器人运动图像的分割,通过分离目标节点的方式提取运动学特征参量,完成机器人轨迹节点跟踪处理;结合节点跟踪处理结果,将运动学不等式与误差向量作为机器人轨迹跟踪控制的约束条件,利用滑模变结构搭建轨迹跟踪控制模型,实现全向移动机器人轨迹跟踪控制;对比实验结果表明,所设计的方法应用后,全向移动机器人角速度曲线、线速度曲线与期望运动轨迹曲线之间的贴合程度均超过90%,满足全向移动机器人轨迹跟踪控制要求。  相似文献   

18.
We propose a control method in which an articulated wheeled mobile robot moves inside straight, curved and branched pipes. This control method allows the articulated wheeled mobile robot to inspect a larger area. The articulated wheeled mobile robot comprises pitch and yaw joints is and propelled by active wheels attached to the robot. Via the proposed control method, the robot takes on two different shapes; one prevents the robot from slipping inside straight pipes and the other allows movement in a pipe that curves in any direction. The robot is controlled by a simplified model for the robot's joint angles. The joint angles of the robot are obtained by fitting to a continuous curve along the pipe path. In addition, the angular velocity of the robot's active wheels is determined by a simplified model. The effectiveness of the proposed the control method was demonstrated with a physical implementation of the robot, and the robot was able to move inside straight, curved and branched pipes.  相似文献   

19.
Abstract

In this study, we propose a new robot system consisting of a mobile robot and a snake robot. The system works not only as a mobile manipulator but also as a multi-agent system by using the snake robot's ability to separate from the mobile robot. Initially, the snake robot is mounted on the mobile robot in the carrying mode. When an operator uses the snake robot as a manipulator, the robot changes to the manipulator mode. The operator can detach the snake robot from the mobile robot and command the snake robot to conduct lateral rolling motions. In this paper, we present the details of our robot and its performance in the World Robot Summit.  相似文献   

20.
基于行为的轮式移动机器人导航控制   总被引:2,自引:0,他引:2  
介绍了一种轮式移动机器人CASIA-I及其运动机构,针对该运动机构给出了机器人的运动方程和基于行为的导航控制算法,并根据该算法进行了软件仿真和实物实验.实验结果表明,该导航控制算法是一种有效的导航算法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号