首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the backface strain (BFS) measurement technique is used to characterise fatigue damage in single-lap adhesive joints subjected to constant amplitude fatigue loading. Different regions in the BFS plots are correlated with damage in the joints through microscopic characterisation of damage and cracking in partially fatigued joints and comparison with 3D finite element analysis (FEA) of various crack growth scenarios. Crack initiation domination was found at lower fatigue loads whereas crack propagation dominated at higher fatigue loads. Using the BFS and fatigue life measurement results, a simple predictive model is proposed which divides the fatigue lifetime into different regions depending upon the fatigue load. The model can be used with experimental BFS measurements to determine the residual life of the joint in different regions of damage progression during the fatigue life.  相似文献   

2.
The performance of adhesively-bonded joints under monotonic and cyclic-fatigue loading has been investigated using a fracture-mechanics approach. The joints consisted of an epoxy film adhesive which was employed to bond aluminium-alloy substrates. The effects of undertaking cyclic-fatigue tests in (a) a ‘dry’ environment of 55% relative humidity at 23°C, and (b) a ‘wet’ environment of immersion in distilled water at 28°C were investigated. In particular, the influence of employing different surface pretreatments for the aluminium-alloy substrates was examined. In addition, single-lap joints were tested under cyclic fatigue loading in the two test environments, and a back-face strain technique has been used which revealed that crack propagation, rather than crack initiation, occupied the dominant proportion of the fatigue lifetime of the single-lap joints. In Part II, the data obtained in the present Part I paper will be employed to predict theoretically the lifetime of the adhesively-bonded single-lap joint specimens.  相似文献   

3.
Adhesive joints have been widely used for fastening thin adherends because they can distribute the load over a larger area than the mechanical joint, require no holes, add very little weight to the structure and have superior fatigue resistance. However, the load capabilities of adhesive joints are affected by both applied pressure and temperature during cure, as well as by service environments because the adhesion characteristics of adhesives are very sensitive to manufacturing and environmental conditions. In this study, the tensile load capabilities of tubular single-lap adhesive joints with an epoxy adhesive were experimentally investigated with respect to service temperature and the applied pressure and temperature during curing operation. The effects of the applied pressure on the tensile load capabilities of tubular single-lap adhesive joints were studied by measuring the actual cure finish temperature using thermocouples and dielectrometry. From the experiments, it was found that the actual cure finish temperature of tubular single-lap adhesive joints increased as applied pressure increased, which increased residual thermal stress in the adhesive layer to decrease the load capabilities of adhesive joints. From finite element analysis and experimental results of tubular singlelap adhesive joints, the optimal geometry condition for adhesive joints was also investigated.  相似文献   

4.
The fatigue behaviour of adhesively-bonded joints, which consisted of an epoxy-film adhesive bonding fibre-composite substrates, has been studied. Using a double-cantilever beam specimen, the rate of crack growth per cycle has been measured as a function of the maximum strain-energy release rate, Gmax. These data have then been modelled, and used to predict the fatigue lifetime of bonded single-lap joints. The agreement between the theoretical predictions and experimental results for the fatigue behaviour of the single-lap joints was found to be excellent.  相似文献   

5.
Experimental tests and finite element method (FEM) simulation were implemented to investigate T700/TDE86 composite laminate single-lap joints with different adhesive overlap areas and adherend laminate thickness. Three-dimensional finite element models of the joints having various overlap experimental parameters have been established. The damage initiation and progressive evolution of the laminates were predicted based on Hashin criterion and continuum damage mechanics. The delamination of the laminates and the failure of the adhesive were simulated by cohesive zone model. The simulation results agree well with the experimental results, proving the applicability of FEM. Damage contours and stress distribution analysis of the joints show that the failure modes of single-lap joints are related to various adhesive areas and adherend thickness. The minimum strength of the lap with defective adhesive layer was obtained, but the influence of the adhesive with defect zone on lap strength was not decisive. Moreover, the adhesive with spew-fillets can enhance the lap strength of joint. The shear and normal stress concentrations are severe at the ends of single-lap joints, and are the initiation of the failure. Analysis of the stress distribution of SL-2-0.2-P/D/S joints indicates that the maximum normal and shear stresses of the adhesive layer emerge on the overlap ends along the adhesive length. However, for the SL-2-0.2-D joint, the maximum normal stress emerges at the adjacent middle position of the defect zone along the adhesive width; for the SL-2-0.2-S joint, the maximum normal stress and shear stress emerge on both edges along the adhesive width.  相似文献   

6.
Adhesive joints have been widely used for fastening thin adherends because they can distribute the load over a larger area than mechanical joints, require no holes, add very little weight to the structure and have superior fatigue resistance. Since the reliability of an adhesive joint is dependent on many parameters, such as the shape of joint, type of applied load and environment, an accurate prediction of the fatigue life of adhesive joints is seldom possible, which necessitates an in situ damage monitoring of the joints during their operation. Recently, a piezoelectric method using the piezoelectric characteristics of epoxy adhesives has been successfully developed for adhesive joints because it can continuously monitor the damage of adhesively bonded structures without producing any defects induced by inserting a sensor. Therefore, in this study, the damage of adhesive joints was monitored by the piezoelectric method during torsional fatigue tests in order to develop the diagnosis criterion for damage monitoring of adhesive joints by the piezoelectric method. The diagnosis criterion was developed by analyzing damage monitoring signals under various test conditions and adopting normalized parameters.  相似文献   

7.
The present study is focused on the fatigue failure initiation at bimaterial corners by means of a configuration based on the Brazilian disc specimens. These specimens were previously used for the generalized fracture toughness determination and prediction of failure in adhesive joints, carried out under static compressive loading. Under static loading, local yielding effects might affect the asymptotic two-dimensional linear elastic stress representation under consideration. Fatigue loading avoids this fact due to the lower load levels used. The present tests were performed using load control; video microscopy and still cameras were used for monitoring initiation and crack growth. The fatigue tests were halted periodically and images of the corner were taken where fatigue damage was anticipated. Damage initiation and subsequent crack growth were observed in some specimens, especially in those which presented brittle failure under static and fatigue tests. These analyses allowed the characterization of damage initiation for a typical bimaterial corner that can be found in composite to aluminium adhesive lap joints.  相似文献   

8.
Strain energy release rate (SERR) based damage analyses of functionally graded adhesively bonded tubular lap joints of laminated fiber reinforced plastic (FRP) composites under varied loadings have been studied using three-dimensional geometrically non-linear finite element (FE) analyses. FE simulations have been carried out when a tubular joint is subjected to axial and pressure loadings. SERR is utilized as the characterizing and governing parameter for assessing damages emanating from the critical location. Individual and total SERR over the damage front have been computed using modified crack closure integral (MCCI) based on the concept of linear elastic fracture mechanics. Results reveal that damage initiation locations in tubular joints subjected to axial and pressure loadings are entirely different. Furthermore, modes responsible for propagation of such damages in tubular joints under axial and pressure loadings are also different. Based on the FE simulations, tubular joints under pressure loading are found to be more vulnerable for damage initiation and its propagation. Furthermore, the damage propagation behavior of tubular joints with pre-embedded damages at the critical location has been compared between conventional mono-modulus adhesives and functionally graded adhesives with appropriate material gradation profile. Results indicate that material gradient profile of the adhesive layer offers excellent reduction in SERR for shorter interfacial failure lengths in tubular joints under axial loading which is desired to delay the damage growth. Improved crack growth resistance in the joint enhances the structural integrity and service life of the tubular joint structure. However, considerable reduction in SERR has not been noticed in the said joint when subjected to pressure loading. Hence, the use of functionally graded adhesive along the bond layer is recommended for the designer/technologist while designing tubular joint under general loading condition.  相似文献   

9.
10.
This study addresses the low-speed impact behavior of adhesively bonded single-lap joints. An explicit dynamic finite element analysis was conducted in order to determine the damage initiation and propagation in the adhesive layers of adhesive single-lap joints under a bending impact load. A cohesive zone model was implemented to predict probable failure initiation and propagation along adhesive–adherend interfaces whereas an elasto-plastic material model was used for the adhesive zone between upper and lower adhesive interfaces as well as the adherends. The effect of the plastic deformation ability of adherend material on the damage mechanism of the adhesive layer was also studied for two aluminum materials Al 2024-T3 and Al 5754-0 having different strength and plastic deformation ability. The effects of impact energy (3 and 11 J) and the overlap length (25 and 40 mm) were also investigated. The predicted contact force-time, contact force-central displacement variations, the damage initiation and propagation mechanism were verified with experimental ones. The SEM and macroscope photographs of the adhesive fracture surfaces were similar to those of the explicit dynamic finite element analysis.  相似文献   

11.
12.
Since the reliability of adhesively bonded joints for composite structures is dependent on many parameters such as the shape and dimensions of joints, type of applied load, and environment, so an accurate estimation of the fatigue life of adhesively bonded joints is seldom possible, which necessitates an in-situ reliability monitoring of the joints during the operation of structures. In this study, a self-sensor method for adhesively bonded joints was devised, in which the adhesive used works as a piezoelectric material to send changing signals depending on the integrity of the joint. In order to validate the method, the piezoelectric properties of the adhesive were measured during the fatigue test. Electrically conducting adherends were used as electrodes without embedded sensors, and the adhesively bonded joint was modeled as the equivalent parallel circuit composed of electric charge and capacitance. From the investigation, it was found that the electric charge increased gradually as cracks initiated and propagated in the adhesive layer, and had its maximum value when the adhesively bonded joint failed. So it is feasible to monitor the integrity of the joint during its lifetime. Finally, a relationship between the piezoelectric property of the adhesive and crack propagation was obtained from the experimental results.  相似文献   

13.
This paper uses 2D and 3D finite element models to predict the stresses within bonded and weld-bonded T-peel joints. Epoxy adhesive is modelled as a homogeneous layer providing a perfect bond between aluminium adherends. Knowledge of the critical tensile stresses enables the likely region of fatigue crack initiation to be predicted. The long term reliability and durability of a joint depend directly on its fatigue strength. This research elucidates the region of cohesive crack initiation, the subsequent direction of crack propagation and the relative duration of the different stages of fatigue crack growth. The various stages of embedded, surface and through-width fatigue growth of cohesive defects within a T-peel joint are compared. This establishes fatigue life from crack initiation to final joint fracture for typical bonded and weld-bonded T-peel joints.  相似文献   

14.
A new backface strain technique was developed to detect fatigue crack initiation in adhesive-bonded lap joints. The technique was based on the special strain distribution in single lap joints and detected the fatigue crack initiation by the switch in the direction of the strain variation. Use of this technique not only permits the determination of fatigue crack initiation life in the joint, but also allows the site of crack initiation to be located. With the assistance of this new backface strain technique, a fatigue crack was found to initiate in the adhesive but to propagate towards the interface to continue its growth on the interface and to cause the final separation of the joint along the interface. Measurements of fatigue crack initiation lives at different stress levels indicate that the adhesive-controlled crack initiation took an increasingly greater proportion of the total fatigue life as the stress decreased, so that the lifetime in the long-life regime was dominated by the resistance of the adhesive to fatigue crack initiation.  相似文献   

15.
单搭接接头承载能力与搭接长度关系定量描述   总被引:1,自引:0,他引:1  
为了研究单搭接接头承载能力与搭接长度的定量关系,对不同搭接长度的单搭接接头进行了有限元分析,得到了单搭接接头承载能力与搭接长度的关系曲线图。并用曲线拟和的方法定量描述了接头承载能力与搭接长度关系。实验结果表明接头承载能力随搭接长度的增加而增长。接头承载能力与搭接长度为非线性关系,也验证了这种定量描述方法的合理性。  相似文献   

16.
In this work, a comparative failure analysis of aluminum (AA8011/AA8011) and glass fiber reinforced polyester (GFRP/GFRP) based similar and dissimilar joints is presented. The GFRP is prepared using pultrusion technique. Single lap joints are prepared by using Araldite R2011 epoxy as an adhesive. The lap joints are then tested under tension to estimate the average shear strength of the assembly. It is observed that the average bond strength of AA8011/AA8011 is lesser than that of the GFRP/GFRP joint. The failure of similar joints occurred by fracture within the adhesive. The dissimilar joint is failed predominantly by interface debonding. Further, a detailed three dimensional stress analysis of the joints is carried out using finite element method (FEM). The damage analysis of adhesive layer is carried out by coupling FEM with cohesive zone model (CZM). The stress, damage distributions and failure mechanisms are compared for similar joints in detail. A failure mechanism is proposed for AA8011/AA8011 type joint that favours a rapid crack growth in the adhesive after crack initiation, which is responsible for lesser bond strength. The increase in overlap length has positive effect that the peak load increases proportionally with overlap length.  相似文献   

17.
The mode II fracture of adhesive joints is well-known to involve large fracture process zones. Their effect in fracture energy measurements can be taken into account by the effective crack length approach. Moreover, fracture process zones can be simulated by cohesive zone models, which are increasingly used for structural analysis of adhesive joints. This paper aimed at evaluating the influence of the traction-separation law on the fracture process zone and on the effective crack length in end-notched flexure tests. Novel analytical cohesive zone models were developed for the bilinear and trapezoidal traction-separation laws. The latter were shown to affect significantly the energy dissipation rate versus effective crack length curve prior to crack initiation. Therefore, this effect seems to provide a simple approach for evaluating approximate traction-separation laws. The models here developed are easy to apply and provide simple approximate expressions useful for specimen selection.  相似文献   

18.
A fracture mechanics-based model for fatigue failure prediction of adhesive joints has been applied in this work. The model is based on the integration of the kinetic law of evolution of defects originated at stress concentrations within the joint. Final failure can be either brittle (fracture toughness-driven) or ductile (tensile/shear strength-driven) depending on the adhesive. The model has been validated against experiments conducted on single-lap shear joints bonded with a structural adhesive. Three different kinds of adhesives, namely a modified methacrylate, a one-part epoxy and a two-part epoxy supplied by Henkel, have been considered and three different overlap lengths have been tested. Fracture toughness and fatigue crack growth properties of the adhesives have been determined with mode I tests. The number of cycles to failure has been successfully predicted in several cases. It is interesting to notice that in the case of joints loaded at the same average shear stress, the shorter the joint, the longer the duration. This fact is also captured by the model.  相似文献   

19.
Predicting the service life of adhesive joints under fatigue loading remains a major challenge. A significant part of this task is to develop laws that govern the crack initiation phase. This paper contributes to this area through the development and application of the backface strain technique. A numerical study was carried out to investigate the effect of key parameters on the technique and to determine optimum gauge specification and location. Calibration curves were then produced relating the change in strain to the extent of damage. These numerical studies were then validated by undertaking a series of fatigue tests on both aluminium and GRP (glass-reinforced polymer)-bonded joints. Following various degrees of predicted damage the joints were carefully sectioned, polished, and studied using optical microscopy. The predicted and observed damage showed close correlation. The fatigue tests have also indicated that, for unmodified joints (intact fillets), even at high loads (50% static failure load) there was an initiation phase that accounted for about half the fatigue life of the joint. Removal of the adhesive fillet has been found to eliminate the initiation phase and consequently reduce fatigue life.  相似文献   

20.
Predicting the service life of adhesive joints under fatigue loading remains a major challenge. A significant part of this task is to develop laws that govern the crack initiation phase. This paper contributes to this area through the development and application of the backface strain technique. A numerical study was carried out to investigate the effect of key parameters on the technique and to determine optimum gauge specification and location. Calibration curves were then produced relating the change in strain to the extent of damage. These numerical studies were then validated by undertaking a series of fatigue tests on both aluminium and GRP (glass-reinforced polymer)-bonded joints. Following various degrees of predicted damage the joints were carefully sectioned, polished, and studied using optical microscopy. The predicted and observed damage showed close correlation. The fatigue tests have also indicated that, for unmodified joints (intact fillets), even at high loads (50% static failure load) there was an initiation phase that accounted for about half the fatigue life of the joint. Removal of the adhesive fillet has been found to eliminate the initiation phase and consequently reduce fatigue life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号