首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
—The mechanical properties of polystyrene filled with chemithermomechanical pulp and wood residues of softwood and hardwood species, which were precoated with phthalic anhydride and various polymers, e.g. polystyrene and PVC, have been investigated. The extent of improvement in the mechanical properties of the composite materials depends on the coating composition, the concentration of phthalic anhydride, the nature of the coated polymers, as well as the concentration of fiber, the nature of the wood species, and the nature of the pulps. Experimental results indicate that phthalic anhydride acts as a coupling agent, but when its performance was compared to that of poly[methylene (polyphenyl isocynate)], it seemed inferior to the latter.  相似文献   

2.
—Glass fiber/unsaturated polyester composites, prepared by impregnating glass braid with varying thickness coatings (from 200 Å up to 1600 Å thick) of polyester resin, were tested with a DuPont Dynamic Mechanical Analyzer. The effects of the polyester resin thickness and silane treatments on the dynamic mechanical properties of the composites were evaluated. The results are supported by Fourier transform infrared spectroscopy of the composite materials. It is shown that both the concentration and the organo-functional group of the silane coupling agent influence the damping, storage, and loss moduli as well as the glass transition temperature (Tg) of the matrix resin in the closest vicinity to the glass/resin bondline. In the absence of a silane inner layer, a low Tg, 'soft' boundary layer exists due to inhibition of the polyester resin cure by the glass surface. It is noted that a reactive silane, such as γ-methacryloxypropyltrimethoxysilane, promotes the formation of a 'soft' or 'rigid' (high Tg) boundary layer, depending on the concentration of the silane in the treating solution. On the other hand, a non-reactive silane, such as methyltrimethoxysilane, produces a 'rigid' interphase in the entire range of concentrations of the silane solution. An attempt was made to correlate the dynamic mechanical properties of the boundary layer with the fiber/polymer interfacial shear strength. Upon pretreatment of glass fibers with silane coupling agents, the relative magnitude of the loss modulus, E", and the nature of the boundary layer (Tg) seem to be better indicators of efficient stress transfer from the polymer to the glass fiber in the composite system than tan δ. Efficient stress transfer is characterized by a low value of E" and 'soft' boundary layers. The results suggest that the mere presence of glass/polyester chemical bonding is insufficient to ensure effective stress transfer. A strong bond results from the synergistic effect of glass/silane/polymer chemical bonding and a 'soft' boundary layer.  相似文献   

3.
To fully utilize the resource in the municipal solid waste (MSW) and improve the strength and toughness of wood plastic composites, glass fiber (GF)‐reinforced wood plastic hybrid composites (GWPCs) were prepared through compounding of recycled high‐density polyethylene (HDPE) from MSW, waste wood fibers, and chopped GF. Mechanical tests of GWPCs specimens with varying amounts of GF content were carried out and the impact fractured surface of GWPCs was observed through scanning electron microscope (SEM). The tensile strength of GWPCs and the efficiency coefficient values were predicted by Kelly‐Tyson method. The results indicated that the tensile strength and impact strength of GWPCs could be improved simultaneously by adding type L chopped GF (L‐GF), and would be dropped down when type S chopped GF (S‐GF) was included. The tensile strength of GWPCs was well accordant with the experimental result. The efficiency coefficient values of S‐GF and L‐GF are ?0.19 and 0.63, respectively. Inspection of SEM micrographs indicated that L‐GF had achieved full adhesion with the plastic matrix through addition of maleic anhydride‐g‐polyethylene. The main fracture modes of GWPCs included pullout of GF, broken of matrix, and interfacial debonding. Because of the synergistic effects between hybrid components in GF/wood fiber/HDPE hybrid system, a special 3D network microstructure was formed, which was the main contribution to the significant improvement in the tensile strength and impact strength of L‐GF‐reinforced hybrid composites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Polypropylene/wood fiber composites were prepared at three different temperatures: 170°C, 180°C, and 190°C. The surface of wood fibers was modified through the use of silane coupling agents and/or coating with polypropylene or maleated polypropylene. The fiber coating was performed by propylene polymerization in the presence of wood fibers or by immersion in an o-dichlorobenzene polypropylene (or maleated polypropylene) solution. Tensile and three-point bending tests were performed in order to evaluate the adhesion between matrix and wood fibers. Evidence shows that 180°C is the best mixing temperature, while the use of vinyl-tris (2-methoxy ethoxy) silane with or without maleated polypropylene coating is the best surface treatment. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:1227–1235, 1997  相似文献   

5.
The degree of mechanical reinforcement that could be obtained by the introduction of henequen cellulosic fibers in a low-density polyethylene, LDPE, matrix was assessed experimentally. Composite materials of LDPE-henequen cellulosic fibers were prepared by mechanical mixing. The concentration of randomly oriented fibers in the composite ranged between 0 and 30% by volume. The tensile strength of these composite materials increased up to 50% compared to that of LDPE. There is also a noticeable increase in Young's modulus for the composite materials that compares favorably with that of LDPE. As expected, the addition of the fibers decreases the ultimate strain values for the composite materials. The thermal behavior of the LDPE-henequen cellulosic fibers materials, studied by differential scanning calorimetry, DSC, showed that the presence of the fibers does not affect the thermal behavior of the LDPE matrix; thus, the interaction between fiber and matrix is probably not very intimate. Preimpregnation of the cellulosic fibers in a LDPE-xylene solution and the use of a silane coupling agent results in a small increment in the mechanical properties of the composites, which is attributed to an improvement in the interface between the fibers and the matrix. The shear properties of the composites also increased with increasing fiber content and fiber surface treatment. It was also noted that the fiber surface treatment improves fiber dispersion in the matrix. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 197–207, 1997  相似文献   

6.
The use of plant fibers as a reinforcement in polyester matrices requires the issue of compatibility between the two phases to be addressed. Because plant fibers present hydrophilic surfaces and polyesters are generally hydrophobic, poor fiber–matrix dispersion and wetting of the fibers by the matrix may result. As a consequence, the mechanical properties of the composite are severely reduced. This study considers the effect of fiber treatment by chemical modification of the fibers (acetylation) or the use of silane or titanate coupling agents on the mechanical properties of coir or oil palm reinforced polyester composites. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1685–1697, 2000  相似文献   

7.
In this work, agave fibers were blended with polystyrene to produce foamed and unfoamed composites. The effect of fiber size and density reduction on the morphological, thermal, mechanical, and rheological properties, as well as crystallinity and water absorption kinetics of the composites was assessed. The results show that Young's modulus and tensile strength increased with increasing fiber content, but decreased with density reduction. Increasing fiber content and decreasing the size of the fibers both increased crystallinity of the composites. Finally, water uptake and diffusion coefficient were found to increase with increasing fiber content for all sizes. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
The effect of grafting level of maleic anhydride (MA) in the maleated polypropylene (PPMA) on the fracture, deformation mechanisms, and mechanical properties of polypropylene (PP) wood flour composites was studied. Tensile strength, elongation at break, and impact strength are noticeably improved with addition of interfacial modifiers as maximum values of the examined mechanical properties were detected when concentration of MA in the compatibilizer was 1 wt %. To explore the microstructure and deformation mechanisms, scanning electron microscopy was employed. It was found that low concentrations of MA up to 1 wt % led to the creation of a thin and irregular polymer layer assisted formation of fibrillated plastic deformation zone around the wood particles, while the bulk PP matrix experienced voiding and brittle fracture. Higher concentrations of MA fetch to stronger interaction between PP and wood flour, the reason for brittle fracture and reduced ductility of the matrix. The impact fracture behavior of the composites during Instrumented impact tests is also discussed with respect to the interfacial bond strength. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1286–1292, 2004  相似文献   

9.
To understand the smart (i.e., good memory) characteristics of hybrid composites of carbon fibers (CFs) and glass fibers (GFs) with epoxy resin as a matrix, the changes in the electrical resistance of composites with tension and on bending were investigated. The electrical resistance behavior of composites under tension changed with the composition of the CF/GF, as well as with the applied strain. The fractional electrical resistance increased slowly with increasing strain within a relatively low strain region. However, with further loading it increased stepwise with the strain according to the fracture of the CF layers. The strain sensitivity of the samples increased with increasing CF weight percentage, and the samples incorporating more than 40 wt % CF showed a strain sensitivity higher than 1.54 for a single CF. The changes in the fractional electrical resistance with bending were not so dominant as those with tension. This difference was attributed to the action of two cancelling effects, which are the increasing and decreasing fractional electrical resistance due to tension and compression with bending, respectively. On recovery from a large applied bending, the fractional electrical resistance decreased slowly with unloading because of the increase of contacts between the fibers that resulted from the reorganization of ruptured CFs during the recovery. Even the composites incorporating a relatively small CF content showed an irreversible electrical resistance with both tension and bending. However, the strain sensitivity being larger with tension than with bending is ascribed to the difference in their mechanical behaviors. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2447–2453, 2002  相似文献   

10.
Polystyrene (PS) from packing materials and plastic cups was reinforced with 30 and 50% wood flour through a blending process with and without a commercial compatibilizing agent. The processability of the pure recycled polystyrene (rPS) and wood–rPS composites was studied in terms of the torque of the mixing process; this was then compared with that of a commercial virgin multipurpose PS. The physical and mechanical properties were compared with those of the virgin PS reinforced with 30 and 50% wood flour. The results show that the mechanical properties of the pure and reinforced rPS did not decrease with respect to the virgin PS, and in terms of the impact strength, the rPS was superior to the virgin plastic. The mechanical properties were not affected by the commercial compatibilizing agent, but the torque of the blends was significantly lower with the compatibilizer. Differential scanning calorimetry (DSC) and dynamic mechanical analysis were used to study the glass‐transition temperature (Tg) of both the pure virgin PS and pure rPS and the wood flour–PS composites. The Tg values of the rPS and wood–rPS composites were higher than those of the virgin PS and wood–virgin PS composites. The use of rPS increased the stiffness and flexural modulus of the composites. Thermogravimetric analysis revealed that the thermal stability of rPS and its composites was slightly greater than that of the virgin PS and its composites. These results suggest that postconsumer PS can be used to obtain composite materials with good mechanical and thermal properties. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
木粉增强聚丙烯力学性能的改善方法   总被引:8,自引:0,他引:8  
以废弃木粉为增强材料,制备了木粉增强聚丙烯复合材料,研究了改善废弃木粉增强聚丙烯复合材料力学性能的途径。结果表明,通过适当的处理方法对木粉进行表面处理、对基体树脂进行改性,可以有效地提高复合体系的界面粘接强度,能大幅度改善复合体系的力学性能;采用短切玻璃纤维及玻璃纤维毡与废弃木粉组合,可以获得力学性能很高、能作为结构材料使用的复合材料。  相似文献   

12.
Hybrid composites of wood flour/kenaf fiber and polypropylene were prepared at a fixed fiber to plastic ratio of 40 : 60 and variable ratios of the two reinforcements namely 40 : 0, 30 : 10, 20 : 20, 10 : 30, and 0 : 40 by weight. Polypropylene was used as the polymer matrix, and 40–80 mesh kenaf fiber and 60–100 mesh wood flour were used as the fiber and the particulate reinforcement, respectively. Maleic anhydride and dicumyl peroxide were also used as the coupling agent and initiator, respectively. Mixing process was carried out in an internal mixer at 180°C at 60 rpm. ASTM D 638 Type I tensile specimens of the composites were produced by injection molding. Static tensile tests were performed to study the mechanical behavior of the hybrid composites. The hybrid effect on the elastic modulus of the composites was also investigated using the rule of hybrid mixtures and Halpin–Tsai equations. The relationship between experimental and predicted values was evaluated and accuracy estimation of the models was performed. The results indicated that while nonhybrid composites of kenaf fiber and wood flour exhibited the highest and lowest modulus values respectively, the moduli of hybrid composites were closely related to the fiber to particle ratio of the reinforcements. Rule of hybrid mixtures equation was able to predict the elastic modulus of the composites better than Halpin–Tsai equation. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

13.
The effect of surface modification of various wood fibers [e.g. woodflour and chemithermomechanical pulp (CTMP) of hardwood aspen, and woodflour of softwood spruce] by precoating with only maleic anhydride (MA) and/or poly[methylene (polyphenyl isocyanate)] (PMPPIC) in the presence of benzoyl peroxide (BPO) on the mechanical performance of modified fiber-filled polystyrene (PS 201 and PS 525) composites has been studied. The effects of the concentration of fiber, MA, PMPPIC, and BPO on the mechanical properties of the composites have also been evaluated. As opposed to unmodified fiber-filled composites, most of the mechanical properties of the modified fiber-filled composites increased with an increase in the concentration of BPO, MA, and/or PMPPIC up to a certain limit, and then either decreased or levelled off. The properties improved even more when both MA and PMPPIC were used as compared with the use of only one of them. The optimum concentrations of BPO, MA, PMPPIC, and fiber vary according to the wood species, the nature of the fiber, and the type of polystyrene. Compared with woodflour, CTMP is believed to be by far the best as far as the mechanical properties of the modified fiber-filled composites are concerned.  相似文献   

14.
Epoxy composites filled with glass fiber and organo‐montmorillonite (OMMT) were prepared by the hand lay‐up method. The flexural properties of the epoxy/glass fiber/OMMT composites were characterized by a three‐point bending test. The flexural modulus and strength of epoxy/glass fiber were increased significantly in the presence of OMMT. The optimum loading of OMMT in the epoxy/glass fiber composites was attained at 3 wt%, where the improvement in flexural modulus and strength was approximately 66 and 95%, respectively. The fractured surface morphology of the epoxy/glass fiber/OMMT composites was investigated using field emission scanning electron microscopy. It was found that OMMT adheres on the epoxy/glass fiber interface, and this is also supported by evidence from energy dispersive X‐ray analysis. Copyright © 2007 Society of Chemical Industry  相似文献   

15.
The storage of postconsumer glass fiber reinforced unsaturated polyester composite impacts negatively on the environment because of the long lifetime and the volume/amount ratio of residuals, which are important aspects to be considered. Two types of additives were employed as an attempt to improve the mechanical properties of sheets manufactured with ground postconsumer glass fiber reinforced orthophthalic unsaturated polyester resin composite and virgin orthophthalic unsaturated polyester resin, a silane‐coupling agent and an organic dispersant. Flexural and impact tests, and dynamic mechanical analyses, demonstrated that the coupling agent increased the mechanical properties, while the dispersant decreased these properties, compared to material without either additive. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1834–1839, 2004  相似文献   

16.
The article describes the effect of structure of vinyl ester resins (VE) on the mechanical properties of neat sheets as well as glass fabric‐reinforced composites. Different samples of VE were prepared by reacting ester of hexahydrophthalic anhydride (ER) and methacrylic acid (MAA) (1 : 1 molar ratio) followed by reaction of monomethacrylate terminated epoxy resin with glutaric (E) or adipic (F) or sebacic acid (G) (2 : 1 molar ratio). The neat VE were diluted with styrene and sheets were fabricated by using a glass mold. A significant reduction in the mechanical properties was observed by increasing the methylene content of resin backbone (i.e., sample E to G). Glass fabric‐reinforced composites were fabricated by vacuum assisted resin transfer molding (VARTM) technique. Resin content in the laminates was 50 ± 5 wt %. Increase in the number of methylene groups in the vinyl ester resin (i.e., increasing the bridge length) did not show any significant effect on limiting oxygen index (LOI) value (21 ± 1) of the laminates but tensile strength, tensile modulus, flexural strength, and flexural modulus all increased though these values are significantly lower than observed in laminates based on resin B. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
To improve the performance of unsaturated polyester (UP) under cold‐heat alternate temperature, self‐synthesized reactive thermotropic liquid crystalline polymer (TLCP)‐methacryloyl copolymer (LCMC), UP, and glass fiber (GF) hybrid composites was prepared by molding technology. The apparent activation energy and crystal behavior analysis of LCMC/UP blends were investigated by Differential scanning calorimetry and X‐ray diffraction (XRD), respectively, the results showed that the addition of LCMC can reduce apparent activation energy and accelerate the curing reaction of UP, the XRD analysis indicated that the crystal phase of LCMC still exist in the blends after blending with UP. The effect of LCMC content on the properties of LCMC/UP/GF hybrid composites such as impact strength, bending strength, and ring‐on‐block wear were also investigated through static mechanical tests and wear tests. The mechanical properties of hybrid composites increased significantly because of the addition of LCMC. The wear tests showed that LCMC can improve the wear resistance of the UP/GF/LCMC hybrid composites even though the content of LCMC was at a relatively low level (5–7.5 wt %). This makes it possible to develop novel kind of UP‐based materials with good wear resistance for various applications. The Worn surface was observed by scanning electron microscopy (SEM) and the mechanism for the improvement is discussed in this paper. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3899–3906, 2007  相似文献   

18.
An incompletely condensed polyvinylsilsesquioxane (PVSQ) oligomer containing abundant silanol groups was synthesized and characterized by FTIR, 1H‐NMR, 29Si‐NMR, and MALDI‐TOF‐MS. Polystyrene/polyvinylsilsesquioxane (PS/PVSQ) hybrid composites were prepared by an in situ bulk polymerization. The hybrid composites showed higher Tg, Td, and char yield than PS homopolymer and without mechanical loss. The improvements in the properties of PS/PVSQ hybrid composites can be ascribed to the crosslinking function of PVSQ by silanol condensation in later processing. The hybrids showed different morphology from discrete microstructure to continuous network depending on the concentration of PVSQ. Because of the surface enrichment, a PVSQ protection layer was formed, which made the hybrid surface more hydrophobic. The structure and the reaction mechanism of PS/PVSQ hybrid composites were also investigated. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
Three kinds of high‐molecular‐weight compatibilizers [copoly(1,4‐phenylene sulfide)‐poly(2,5‐phenylene sulfide amine)] (PPS‐NH2) containing different proportions of amino units in the side chain) were synthesized by the reaction of dihalogenated monomer and sodium sulfide via nucleophilic substitution polymerization under high pressure. The intrinsic viscosity of the obtained copolymers was 0.354–0.489 dL/g and they were found to have good thermal performance with melting point (Tm) of 271.3–281.0 °C and initial degradation temperature (Td) of 490.0–495.7 °C. There was an excellent physical compatibility between PPS‐NH2 and the pure industrial PPS. The results of dynamic mechanical analysis and macro‐ and micromechanical test showed that the selective compatibilizer PPS‐NH2 (1.0) (1.0% mol aminated ratio) can improve the mechanical and interfacial properties of polyphenylene sulfide/glass fiber (PPS/GF) composite. The macro‐optimal tensile strength, Young's modulus, bending strength, and notched impact strength of 5%PPS‐NH2 (1.0)/PPS/GF composite raised up to 141 MPa, 1.98 GPa, 203 MPa, and 6.15 kJ/m2, which increased 12.8%, 9.4%, 4.1%, and 13.8%, respectively, comparing with the pure PPS/GF composite (125 MPa, 1.81 GPa, 195 MPa, and 5.40 kJ/m2, respectively). © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45804.  相似文献   

20.
Composites were made from carbon fibers and gelatin using a solvent‐casting or solution‐impregnation technique. Relationships between the fiber volume fraction (Vf), glycerol (plasticizer) content, gelatin content, fiber form, and mechanical properties (tensile strength and modulus, elongation at break, and shear strength) of the composites were investigated. In long carbon fiber gelatin composite (CL/Gel), tensile strength, modulus, and shear strength increased steadily with the Vf. In the case of a short carbon fiber gelatin composite (CS/Gel), an initial improvement in tensile strength and modulus was followed by a reduction, whereas the shear strength improved with the Vf and then reached a constant value. The elongation decreased with the Vf for both composites. It is shown that CL/Gel had higher values of strength, modulus, and elongation than did CS/Gel at any Vf level. The effects of glycerol and gelatin contents on the mechanical properties of the composites were found to be much less significant as compared to the Vf. According to scanning electron microscopic observation of the fracture surfaces, the fibers were uniformly distributed in the gelatin matrix, but the interfacial adhesion between the gelatin matrix and the carbon fibers was not very good for both composites. Fiber surface modification would be necessary to further improve the mechanical properties of the two composites. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 987–993, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号