首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, improvements in mechanical and thermal behavior of short glass fiber (GF) reinforced diglycidyl ether of bisphenol-A (DGEBA) based epoxy with hydroxyl terminated polybutadiene (HTPB) modification have been studied. A silane coupling agent (SCA) with a rubber reactive group was also used to improve the interfacial adhesion between glass fibers and an epoxy matrix. 10, 20, and 30 wt% GF reinforced composite specimens were prepared with and without silane coupling agent treatment of fibers and also HTPB modification of epoxy mixture. In the ruber modified specimens, hardener and HTPB were premixed and left at room temperature for 1 hr before epoxy addition. In order to observe the effects of short glass fiber reinforcement of epoxy matrix, silane treatment of fiber surfaces, and also rubber modification of epoxy on the mechanical behavior of specimens, tension and impact tests were performed. The fracture surfaces and thermal behavior of all specimens were examined by scanning electron microscope (SEM), and dynamic mechanical analysis (DMA), respectively. It can be concluded that increasing the short GF content increased the tensile and impact strengths of the specimens. Moreover, the surface treatment of GFs with SCA and HTPB modification of epoxy improved the mechanical properties because of the strong interaction between fibers, epoxy, and rubber. SEM studies showed that use of SCA improved interfacial bonding between the glass fibers and the epoxy matrix. Moreover, it was found that HTPB domains having relatively round shapes formed in the matrix. These rubber domains led to improved strength and toughness, due mainly to the “rubber toughening” effect in the brittle epoxy matrix.  相似文献   

2.
In this study, glass fibers were modified using γ‐glycidoxypropyltrimethoxysilane of different concentrations to improve the interfacial adhesion at interfaces between fibers and matrix. Effects of γ‐glycidoxypropyltrimethoxysilane on mechanical properties and fracture behavior of glass fiber/epoxy composites were investigated experimentally. Mechanical properties of the composites have been investigated by tensile tests, short beam tests, and flexural tests. The short‐beam method was used to measure the interlaminar shear strength (ILSS) of laminates. The tensile and flexural properties of composites were characterized by tensile and three‐point bending tests, respectively. The fracture surfaces of the composites were observed with a scanning electron microscope. On comparing the results obtained for the different concentrations of silane solution, it was found that the 0.5% GPS silane treatment provided the best mechanical properties. The ILSS value of heat‐cleaned glass fiber reinforced composite is enhanced by ∼59% as a result of the glass fiber treatment with 0.5% γ‐GPS. Also, an improvement of about 37% in tensile strength, about 78% in flexural strength of the composite with the 0.5% γ‐GPS treatment of glass fibers was observed. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

3.
In this work, a new material based on an epoxy thermoset modified with a thermoplastic filled with silica nanoparticles was investigated. When thermoplastic particles are filled with nanoparticles with unique properties such as high efficiency for absorbing ultraviolet light, electric or magnetic shielding, high electrical conductivity, and high dielectric constants, more than an enhancement of the mechanical properties is expected to be achieved for modified epoxy‐based thermosets. Particles of poly(methyl methacrylate) (PMMA) filled with silica nanoparticles were used to modify a thermoset based on a full reaction between diglycidyl ether of bisphenol A and 3‐(aminomethyl)benzylamine. When the preformed thermoplastic particles were mixed with the reactive constituents of the epoxy system under certain curing conditions in which total miscibility was avoided, uniform particle dispersions could be obtained. The relationships between the composition, morphology (nanoscale and microscale), glass‐transition temperature, mechanical properties, and fracture toughness were considered. Four main results were obtained for consideration of the potential of silica‐filled PMMA as an important modifier of brittle epoxy thermoset systems: (1) a good dispersion of the silica nanoparticles in the PMMA domains, (2) a good dispersion of the silica‐filled PMMA microparticles in the epoxy matrix, (3) the possibility of partial dissolution of the PMMA‐rich domains into the epoxy system, and (4) a slight increase in properties such as the hardness, indentation modulus, and fracture toughness. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
A nanocomposite based on nanoclay and resol that was modified with cardanol, a natural alkyl phenol, shows improvement for the glass‐fiber‐reinforced epoxy‐composite system. Dispersion of the nanocomposite was investigated by X‐ray, showing good results obtained by the in situ polymerization method. The mechanical properties of the final composites were improved by doping a 6 wt% of nanoclay in cardanol‐modified‐resol (CMR) into the epoxy matrix. The results show that a 15 wt% of CMR in epoxy is a most suitable ratio. Using polyamide as a curing agent instead of other traditional systems, such as anhydrides or amines for epoxy resin, overcame important limitations, further allowing for improved processability. The overall composite performance was enhanced. Additionally, the thermal stability of the system was investigated by thermal gravimetric analysis. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3238–3242, 2007  相似文献   

5.
Mechanical properties and deformation mechanisms of polypropylene (PP)/wood fiber (WFb) composites modified with maleated polypropylene as compatibilizer and styrene-butadiene rubber (SBR) as impact modifier have been studied. The addition of maleated polypropylene to the unmodified polypropylene/wood fiber composite enhances the tensile modulus and yield stress as well as the Charpy impact strength. SBR does not cause a drop in the tensile modulus and yield strength because of the interplay between decreasing stiffness and strength by rubber modification and increasing stiffness and strength by good interfacial adhesion between the matrix and fibers. The addition of both maleated polypropylene and rubber to the polypropylene/wood fiber composite does not result in an improvement of effects based on maleated polypropylene and rubber, which includes possible synergism. The deformation mechanisms in unmodified polypropylene/wood fiber composite are matrix brittle fracture, fiber debonding and pullout. A polymeric layer around the fibers created from maleated polypropylene may undergo debonding, initiating local plasticity. Rubber particle cavitation, fiber pullout and debonding were the basic failure mechanisms of rubber-toughened polypropylene/wood fiber composite. When maleated polypropylene was added to this composite, fiber breakage and matrix plastic deformation took place. Polym. Compos. 25:521–526, 2004. © 2004 Society of Plastics Engineers.  相似文献   

6.
Diglycidyl ether of bisphenol-A type epoxy resin cured with diamino diphenyl sulfone was used as the matrix for fiber-reinforced composites to get improved mechanical and thermal properties for the resulting composites. E-glass fiber was used for fiber reinforcement. The morphology, tensile, flexural, impact, dynamic mechanical, and thermal properties of the composites were analyzed. The tensile, flexural, and impact properties showed dramatic improvement with the addition of glass fibers. Dynamic mechanical analysis was performed to obtain the Tg of the cured matrix as well as the composites. The improved thermal stability of the composites was clear from the thermogravimetric analysis. Scanning electron micrographs were taken to understand the interfacial adhesion between the fiber and the matrix. The values of mechanical properties were compared with modified epoxy resin composite system. Predictive models were applied using various equations to compare the mechanical data obtained theoretically and experimentally. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

7.
In certain applications of fiber reinforced polymer composites flexibility is required. The aim of this study was to improve flexibility of short glass fiber reinforced epoxy composites by using a liquid elastomer. For this purpose, diglycidyl ether of bisphenol-A (DGEBA) based epoxy matrix was modified with hydroxyl terminated polybutadiene (HTPB). A silane coupling agent (SCA) was also used to improve the interfacial adhesion between glass fibers and epoxy matrix. During specimen preparation, hardener and HTPB were premixed and left at room temperature for an hour before mixing with epoxy resin to allow possible reactions to occur. In order to compare flexibility of the specimens flexural tests were conducted and the data were evaluated numerically by using a derived relation. Test data and scanning electron microscope analysis indicated that surface treatment of glass fibers with SCA, and HTPB modification of epoxy matrix improved flexural properties especially due to the strong interaction between fibers, epoxy, and rubber. It was also observed that HTPB modification resulted in formation of relatively round rubber domains in the epoxy matrix leading to increased flexibility of the specimens.  相似文献   

8.
The polycyanurate network matrix derived from the thermal, dibutyl tin dilaurate catalyzed polymerization of bisphenol A dicyanate was modified in their glass–laminate composites with different linear polymeric additives bearing pendant phenol, cyanate, and epoxy functions. The mechanical properties and fracture energy for delamination of the glass–laminate composites were estimated as functions of the backbone structure and concentration of the various additives. The effect of altering the nature or concentration of the functional group for a given backbone structure of the additive was examined in some cases. Except for the epoxy functional acrylic polymer, all other systems adversely affected the fracture energy for delamination of the composites due to either plasticization or embrittlement of the matrix. With the exception of the styrene‐hydroxyphenyl maleimide (SPM) copolymer, the other modifiers impaired the mechanical properties and adversely affected the thermomechanical profile of the composites. In the cases of the phenol functional acrylic polymer and its cyanate derivative, plasticization of the matrix by the partly phase‐separated additive, which eased the fiber debonding, appears to be responsible for the impairment of the mechanical properties. The high glass transition temperature SPM copolymer enhanced the resin–reinforcement interaction through dipolar interactions induced by the hydroxyl groups, which resulted in amelioration of the mechanical properties. However, its possible coreaction and formation of a brittle, homogeneous phase with the polycyanurate was conducive for poor damage tolerance. The SEM analysis of the fractured composites showed that in the elastomers fiber debonding is the major cause for delamination. Although the presence of SPM led to a stronger interphase, failure occurred either in the brittle matrix or through fiber breakage. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 75–88, 2000  相似文献   

9.
The temperature dependence of the impact fracture energies of composites reinforced with random-planar orientation of short fibers was studied theoretically and experimentally. The theoretical values of the impact fracture energy of these composites is described by the sum of the fracture energy of the matrix and the fibers and the energy necessary to pull out the fibers on the crack surface, taking into consideration the temperature dependence of the critical fiber length and the breaking probability of fibers. The impact fracture energies were studied experimentally for epoxy and unsaturated polyester resins reinforced with random-planar orientation of short glass fibers. The theoretical values of the impact fracture energy were in good agreement with the experimental values. It was found that in any composite, the impact fracture energy of the fibers in a composite mainly contributes to the impact fracture energy of the composite at room temperature. At higher temperatures, fiber pull-out energy is more significant.  相似文献   

10.
The brittle nature of epoxy polymers is one of their main drawbacks, preventing their widespread applications. In this research article, a new modifier with an extremely toughening effect on brittle epoxy was developed. It was found that introducing low‐molecular‐weight polyethylene glycol (PEG) in the low amounts (up to 10%) into epoxy matrix considerably improves the impact and fracture properties of epoxy thermosetting polymer without attenuating its tensile properties. Epoxy/PEG hybrid containing 10% PEG exhibited an impact strength of 56.3 kJ/m2 which is 5.7 times greater than that of pristine epoxy. The fracture strength of 7.7 MPa m1/2 with 540% increase compared to pure epoxy was also observed for the hybrid material. Morphological, chemical, and thermal properties of epoxy/PEG hybrid were studied using scanning electron microscopy, Fourier transform infrared spectrometry, and differential thermal analysis, respectively, to find out the basic reasons behind such a considerable improvement. A new morphology, consisting uniformly dispersed PEG nanoparticles in the epoxy matrix, was observed for the modified hybrid. This unique morphology for epoxy/PEG was named as nanoblend. The results showed that the formation of nanoblend morphology with strong interaction between epoxy and PEG in the blend structure is responsible for epoxy toughness. POLYM. ENG. SCI., 54:1833–1838, 2014. © 2013 Society of Plastics Engineers  相似文献   

11.
The epoxy resin matrix of carbon fiber (CF)‐reinforced epoxy composites was modified with novolac resin (NR) to improve the matrix‐dominated mechanical properties of composites. Flexural strength, interlaminar shear strength (ILSS), and impact strength were measured with unfilled, 7 wt% NR, 13 wt% NR, and 18 wt% NR filled to epoxy to identify the effect of adding NR on the mechanical properties of composites. The results showed that both interfacial and impact properties of composites were improved except for flexural property. The largest improvement in ILSS and impact strength were obtained with 13 wt% loading of NR. ILSS and impact strength were improved by 7.3% and 38.6%, respectively, compared with the composite without NR. The fracture and surface morphologies of the composite specimens were characterized by scanning electron microscopy. Intimate bonding of the fibers and the matrix was evident with the content of 7–13 wt% NR range. Decrease of crosslinking density and formation of NR transition layer were deduced with adding NR. POLYM. COMPOS., 2011. © 2010 Society of Plastics Engineers  相似文献   

12.
The effect of short Aramid fibers on the fracture and toughening behavior of epoxy with high glass transition temperature has been studied. Fine dispersion of the fibers throughout the matrix is evidenced by optical microscopy. Compared with neat epoxy resin, the fracture toughness (KIC) of the composites steadily increases with increasing fiber loading, indicating that addition of Aramid fibers has an effective toughening effect to the intrinsically brittle epoxy matrix. Scanning electron microscopy (SEM) indicates that formation of numerous step structures for fiber‐filled epoxy systems is responsible for the significant toughness improvement. SEM and transmitted optical microscopy show that fiber pullout and fiber breakage are the main toughening mechanisms for the Aramid fiber/epoxy composites. POLYM. COMPOS. 26:333–342, 2005. © 2005 Society of Plastics Engineers.  相似文献   

13.
Unidirectional carbon fiber reinforced geopolymer composite (Cuf/geopolymer) is prepared by a simple ultrasonic-assisted slurry infiltration method, and then heat treated at elevated temperatures. Effects of high-temperature heat treatment on the microstructure and mechanical properties of the composites are studied. Mechanical properties and fracture behavior are correlated with their microstructure evolution including fiber/matrix interface change. When the composites are heat treated in a temperature range from 1100 to 1300 °C, it is found that mechanical properties can be greatly improved. For the composite heat treated at 1100 °C, flexural strength, work of fracture and Young's modulus reach their highest values increasing by 76%, 15% and 75%, respectively, relative to their original state before heat treatment. The property improvement can be attributed to the densified and crystallized matrix, and the enhanced fiber/matrix interface bonding based on the fine-integrity of carbon fibers. In contrast, for composite heat treated at 1400 °C, the mechanical properties lower substantially and it tends to fracture in a very brittle manner owing to the seriously degraded carbon fibers together with matrix melting and crystal phases dissolve.  相似文献   

14.
The effect of polyurethane on the mechanical properties and Mode I and Mode II interlaminar fracture toughness of glass/epoxy composites were studied. Polyurethanes (PU) synthesized using polyols and toluene diisocyanate were employed as modifier for epoxy resin by forming interpenetrating polymer network. The PU/Epoxy IPN was used as matrix material for GFRP. PU modified epoxy composite laminates having varying PU contents were prepared. The effect of PU content on the mechanical properties like interlaminar fracture toughness (Mode I, G1c and Mode II, GIIc), tensile strength, flexural strength, and Izod impact strength were studied. The morphological studies were conducted on the fractured surface of the composite specimen by scanning electron microscopy (SEM). Tensile strength, flexural strength, and impact strength of PU‐modified epoxy composite laminates were found to increase inline with interlaminar fracture toughness (G1c and GIIc) with increasing PU content to a certain limit and then it was found to decrease with increase in PU content. It was observed that toughening of epoxy with PU increases the Mode I and Mode II delamination toughness up to 17 and 120% higher than that of untoughened composite specimen, respectively. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

15.
室温固化改性芳胺固化剂的研制   总被引:3,自引:0,他引:3  
李固  钱建平  叶惠萍 《热固性树脂》2002,17(1):X015-X016
研究了改性芳香胺环氧树脂室温固化剂。通过甲醛与苯胺缩合所生成的缩聚多元伯胺能获得良好的固化性能。着重研究了胺醛物质的量比、催化剂对缩合物的影响。  相似文献   

16.
以聚砜(PSF)改性环氧树脂(EP)为基体树脂,玻璃纤维为增强材料,采用高温模压成型法制备出PSF改性EP/玻璃纤维复合材料。结果表明:PSF能有效提高EP基体的热稳定性能;经200℃热老化72 h后,PSF改性EP/玻璃纤维复合材料的热失重率<1%,其冲击强度和弯曲强度呈先升后降态势,电绝缘性能仍然较好(其体积电阻率和表面电阻率的数量级仍保持在1012左右);该复合材料在高温绝缘场合中具有良好的应用前景。  相似文献   

17.
A matrix resin for carbon fiber reinforced composite was developed that consisted of resol type phenolic and difunctional epoxy resin (PR-EP) condensate or adduct. Carbon fiber reinforced composite with fiber volume fraction of 0.6 was prepared with PR-EP matrix containing 0, 50, 100, 150, and 175 parts of epoxy resin per hundred parts of phenolic resin (php), especially a synthesized resol type. One-shot and prepreg techniques have been adopted and the study of loss of volatiles has indicated the superiority in terms of favorable processability of prepreg technique over the other. FTIR spectroscopic analysis confirmed the PR-EP adduct formation at the prepreg preparation stage. The improvement in properties such as tensile strength and elongation at break was observed in resin matrices with epoxy and phenolic resin; however, the flexural strength and modulus remained more or less unaltered. The prepreg technique of composite preparation has resulted in substantial improvement in mechanical properties and the same was attributed to the formation of PR-EP adduct and low volatiles during cure. Composites of carbon fiber reinforced PR-EP matrix developed here are likely to meet the requirement of aerospace structures in view of the realization of a wide spectrum of properties.  相似文献   

18.
In this work, solutions of rare earth modifier (RES) and epoxy chloropropane (ECP) grafting modification method were used for the surface treatment of aramid fiber. The effect of chemical treatment on aramid fiber has been studied in a composite system. The surface characteristics of aramid fibers were characterized by Fourier transform infrared spectroscopy (FTIR). The interfacial properties of aramid/epoxy composites were investigated by means of the single fiber pull‐out tests. The mechanical properties of the aramid/epoxy composites were studied by interlaminar shear strength (ILSS). As a result, it was found that RES surface treatment is superior to ECP grafting treatment in promoting the interfacial adhesion between aramid fiber and epoxy matrix, resulting in the improved mechanical properties of the composites. Meanwhile, the tensile strengths of single fibers were almost not affected by RES treatment. This was probably due to the presence of reactive functional groups on the aramid fiber surface, leading to an increment of interfacial binding force between fibers and matrix in a composite system. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:4165–4170, 2006  相似文献   

19.
Sisal fiber reinforced biocomposites are developed using both unmodified petrol based epoxy and bioresin modified epoxy as base matrix. Two bioresins, epoxidized soybean oil and epoxy methyl soyate (EMS) are used to modify the epoxy matrix for effective toughening and subsequently two layers of sisal fiber mat are incorporated to improve the mechanical and thermomechanical properties. Higher strength and modulus of the EMS modified epoxy composites reveals good interfacial bonding of matrix with the fibers. Fracture toughness parameters KIC and GIC are determined and found to be enhanced significantly. Notched impact strength is found to be higher for unmodified epoxy composite, whereas elongation at break is found to be much higher for modified epoxy blend. Dynamic mechanical analysis shows an improvement in the storage modulus for bioresin toughened composites on the account stiffness imparted by fibers. Loss modulus is found to be higher for EMS modified epoxy composite because of strong fiber–matrix interfacial bonding. Loss tangent curves show a strong influence of bioresin on damping behavior of epoxy composite. Strong fiber–matrix interface is found in modified epoxy composite by scanning electron microscopic analysis. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42699.  相似文献   

20.
The main target of the current work was to study the mechanical properties of milled E‐glass, S‐glass, and high‐strength (carbon fiber)‐reinforced epoxy composites. At first, tensile behavior of the as‐received fibers was evaluated by conducting different tensile tests. Afterwards, the effects of employing an integral blended coupling agent on the performance of the pure epoxy were investigated by microhardness tests and optical microscopic images. Then, the epoxy composites were prepared simply by mixing and stirring 1, 3, and 5 wt% of the milled fibers with the epoxy resin and its hardener. The effects of mixture degassing and addition of the coupling agent to the mixture were examined based on the mechanical properties of the fabricated composites. Also, scanning electron microscope macro‐ and micrographs of the transverse and longitudinal fracture surfaces were used to study the fracture behavior and identify the active toughening mechanisms. The best results were obtained for the degassed and modified milled (carbon fiber epoxy)‐reinforced composite, which enhanced the tensile strength, elongation, Young's modulus, and toughness up to 12%, 17%, 19%, and 27%, respectively. The current study shows that the composite not only is cost effective but also offers better mechanical properties. J. VINYL ADDIT. TECHNOL., 24:130–138, 2018. © 2016 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号