首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Four ethylene vinyl acetate (EVA) co-polymers with different vinyl acetate (VA) contents (9–20 wt%) were treated with corona discharge to improve their adhesion to polychloroprene (PCP) adhesive. The thermal properties of the EVAs decreased as their VA content increased, caused by a decrease in crystallinity. The elastic and viscous moduli of the EVAs decreased and the temperature and modulus at the cross-over between these moduli decreased with increasing VA content. Contact-angle measurements (water), infrared spectroscopy (ATR-IR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to analyse the surface modifications produced in the corona-discharge-treated EVAs. The corona discharge treatment produced improved wettability and created roughness and oxygen moieties on the EVA surfaces. The higher the VA content and the higher the corona energy, the more significant modifications were produced on the EVA surface. The VA content also affected the T-peel strength values of treated EVA/polychloroprene + isocyanate adhesive joints, as the values increased with increasing VA content. Mixed failure modes (interfacial + cohesive failure in the EVA) were obtained in the adhesive joints produced with corona discharge treated EVAs containing more than 9 wt% VA. The accelerated ageing of the joints did not affect the T-peel strength values, but the locus of failure in most cases became fully cohesive in the EVA, likely due to the higher extent of curing of the adhesive.  相似文献   

2.
The surface modifications produced by UV-ozone treatment of two ethylene-vinyl acetate (EVA) copolymers containing 12 and 20 wt% vinyl acetate (EVA12 and EVA20 respectively) were studied. The treatment with UV-ozone improved the wettability of both EVAs due to the creation of new carbon–oxygen moieties. The extent of these modifications increased with increasing length of the treatment and the modifications produced in EVA20 were produced for shorter lengths of treatment. The UV-ozone treatment also created roughness and heterogeneities on the EVA surfaces. Whereas roughness formation prevailed on the UV-ozone treated EVA12, important ablation was dominant on the treated EVA20. T-peel strength values in joints made with polychloroprene adhesive increased when the EVAs were treated with UV-ozone. Short length of UV-ozone treatment (1 min) produced higher T-peel strength in joints made with EVA20 whereas higher T-peel strength values in joints made with EVA12 were obtained after treatment for 5–7.5 min in which a cohesive failure into a weak boundary layer on the treated EVA surface was found. Furthermore, the adhesion of UV-ozone treated EVA20 to acrylic paint increased. Finally, the ageing resistance of the treated EVA/polychloroprene adhesive joints was good and the surface modifications on the UV-ozone treated EVAs lasted for 24 h after treatment at least.  相似文献   

3.
In this study, treatment with sulphuric acid was used to increase the adhesion of an ethylene-vinyl acetate copolymer containing 20 wt% vinyl acetate (EVA20). The treatment with sulphuric acid improved the wettability of EVA20 due to thecreation of different oxygen and sulphonic acid moieties on the surface. The treatment also created cracks and heterogeneities on the EVA20 surface, and enhanced T-peel strength values of EVA20/polychloroprene adhesive+5 wt% isocyanate joints were obtained. The loci of failure of the joints were mixed, i.e. , adhesional and cohesive in the adhesive. Peel strength values of both as-received and sulphuric acid-treated EVA20/polychloroprene adhesive joints increased after ageing at 50°C and 95 wt% relative humidity for 72 because the complete cure of the adhesive was thereby was produced. The durability of the EVA20 treated with sulphuric acid was monitored between 15 min and 5 years. High peel strength values were obtained for times up to 61 days; the joints produced with the treated EVA20 five years after treatment showed lower peel strength value due to the creation of a weak boundary layer produced by reaction of the residual sulphuric acid on the surface with EVA20. On the other hand, different experimental variables in the treatment of EVA20 with sulphuric acid were considered. The optimum treatment conditions for EVA20 were obtained by immersion in highly concentrated sulphuric acid (96 wt%) for one minute followed by neutralisation with ammonium hydroxide.  相似文献   

4.
In this study, treatment with sulphuric acid was used to increase the adhesion of an ethylene-vinyl acetate copolymer containing 20 wt% vinyl acetate (EVA20). The treatment with sulphuric acid improved the wettability of EVA20 due to thecreation of different oxygen and sulphonic acid moieties on the surface. The treatment also created cracks and heterogeneities on the EVA20 surface, and enhanced T-peel strength values of EVA20/polychloroprene adhesive+5 wt% isocyanate joints were obtained. The loci of failure of the joints were mixed, i.e. , adhesional and cohesive in the adhesive. Peel strength values of both as-received and sulphuric acid-treated EVA20/polychloroprene adhesive joints increased after ageing at 50°C and 95 wt% relative humidity for 72 because the complete cure of the adhesive was thereby was produced. The durability of the EVA20 treated with sulphuric acid was monitored between 15 min and 5 years. High peel strength values were obtained for times up to 61 days; the joints produced with the treated EVA20 five years after treatment showed lower peel strength value due to the creation of a weak boundary layer produced by reaction of the residual sulphuric acid on the surface with EVA20. On the other hand, different experimental variables in the treatment of EVA20 with sulphuric acid were considered. The optimum treatment conditions for EVA20 were obtained by immersion in highly concentrated sulphuric acid (96 wt%) for one minute followed by neutralisation with ammonium hydroxide.  相似文献   

5.
Two ethylene vinyl acetate (EVA) copolymers (12 and 20 wt% of vinyl acetate,VA, content) have been treated with low pressure RF plasmas from non-oxidizing gases (Ar, N2) and oxidizing gases (air, a mixture of 4N2: 6O2 (v/v), O2 and CO2). The formation of polar moieties on both EVAs was more noticeable by treatment with plasmas from non-oxidizing gases than from oxidizing ones (the higher the reactivity, the lower the difference with respect to untreated EVA surfaces). The surface etching with the non-oxidizing plasmas, giving rise to a high roughness, depends on the wt% of VA in the composition of the copolymer because of the different resistances of VA (low) and PE (high) to the non-oxidizing plasma particles bombardment. The adhesion properties obtained using a polyurethane adhesive (PU) showed high T-peel strength values and adhesion failure in EVAs treated with plasmas from oxidizing gases, due to roughness produced causing mechanical interlocking of the adhesive. Lower T-peel strength values were obtained with non-oxidizing plasmas: the values for EVA12 being, in general, lower than those obtained for EVA20. The durability of the treated EVAs/PU adhesive joints after ageing in humidity and temperature was quite good.  相似文献   

6.
Different amounts (50-170 php--parts per hundred parts of EVA, 33-63 wt%) of two tackifiers (hydrogenated rosin ester, polyterpene resin) were added to an ethylene vinyl acetate (EVA) copolymer containing 28 wt% vinyl acetate. The EVA and the tackifier were characterized using infrared (IR) spectroscopy, DSC measurements, and stress-controlled plate-plate rheology. The properties and compatibility of the EVA-tackifier mixtures were studied using DSC, DMTA, and stress-controlled plate-plate rheology. Immediate adhesion was measured as a quantification of tack, and the T-peel strength of roughened styrene-butadiene rubber/EVA-tackifier adhesive joints was also obtained. The increase in the amount of tackifier noticeably changed the crystallinity of polyethylene blocks in the EVA, and the temperature at the cross-over between the curves of the storage and loss moduli as a function of the temperature was displaced to a lower value. Whereas the hydrogenated rosin ester was compatible with the amorphous ethylene vinyl acetate copolymer regions of the EVA (Tg value increased) reducing its crystallinity, the polyterpene resin was compatible with the polyethylene blocks of the EVA (T g value was not modified), increasing its crystallinity. Immediate adhesion of the EVA-tackifier mixtures was improved by adding both hydrogenated rosin ester and polyterpene tackifiers. On the other hand, there was an optimum tackifier content at which the maximum T-peel strength value was obtained.  相似文献   

7.
Different amounts (50-170 php--parts per hundred parts of EVA, 33-63 wt%) of two tackifiers (hydrogenated rosin ester, polyterpene resin) were added to an ethylene vinyl acetate (EVA) copolymer containing 28 wt% vinyl acetate. The EVA and the tackifier were characterized using infrared (IR) spectroscopy, DSC measurements, and stress-controlled plate-plate rheology. The properties and compatibility of the EVA-tackifier mixtures were studied using DSC, DMTA, and stress-controlled plate-plate rheology. Immediate adhesion was measured as a quantification of tack, and the T-peel strength of roughened styrene-butadiene rubber/EVA-tackifier adhesive joints was also obtained. The increase in the amount of tackifier noticeably changed the crystallinity of polyethylene blocks in the EVA, and the temperature at the cross-over between the curves of the storage and loss moduli as a function of the temperature was displaced to a lower value. Whereas the hydrogenated rosin ester was compatible with the amorphous ethylene vinyl acetate copolymer regions of the EVA (Tg value increased) reducing its crystallinity, the polyterpene resin was compatible with the polyethylene blocks of the EVA (T g value was not modified), increasing its crystallinity. Immediate adhesion of the EVA-tackifier mixtures was improved by adding both hydrogenated rosin ester and polyterpene tackifiers. On the other hand, there was an optimum tackifier content at which the maximum T-peel strength value was obtained.  相似文献   

8.
In order to improve their adhesion to polyurethane adhesives, three unvulcanized block styrene-butadiene-styrene (SBS) rubbers with styrene contents between 33% and 55% were surface-treated with solutions of 2 wt% trichloro-isocyanuric acid (TCI) in ethyl acetate. The joint strength was estimated using T-peel tests and the failed surfaces were analyzed to assess the locus of failure. The failed surfaces were analyzed using ATR-IR spectroscopy, contact angle measurements, XPS, and SEM. An unexpected trend in the joint strength was obtained because the locus of failure depended on both the styrene content and the mechanical properties of each SBS rubber. A mixed mode of failure was obtained in joints produced with S 1 rubber (33 wt% styrene content), whereas failure in the chlorinated layer was observed with S3 rubber (55 wt% styrene content); cohesive failure in the adhesive was found for the joints produced with S2 rubber (44 wt% styrene content).  相似文献   

9.
A synthetic vulcanized styrene-butadiene rubber (R) was treated with a halogenation agent (TCI = trichloroisocyanuric acid) to produce improved adhesion (i.e. high T-peel strength) in joints prepared with a one-component, solvent-based polyester urethane adhesive. Several amounts (0.5 to 7 wt%) of TCI solutions in ethyl acetate were applied to the rubber surface and, after T-peel tests were carried out, the surfaces of the debonded chlorinated rubber pieces were analyzed with XPS, ATR-infra-red (ATR-IR) spectroscopy, Scanning Electron Microscopy (SEM) coupled with EDX analysis, and contact angle measurements. The T-peel strength of unchlorinated rubber (0 wt% TCl) joints was small due to the migration of low molecular species (mainly microcrystalline wax) to the rubber surface during the cure of the adhesive, creating a weak layer in which the failure was produced. Chlorination with amounts of TCI up to 2 wt% produced a noticeable increase in T-peel strength, but treatment with higher amounts of TCI resulted in a decrease in joint strength. Although chlorination with TCI created chlorinated hydrocarbon groups and C-O moieties on the rubber surface, the surface in contact with the adhesive was additionally degraded and, consequently, the locus of failure of the joints varied in a manner which depended on the amount of TCI applied to the surface. Treatment with amounts of TCI up to 2 wt% did not greatly degrade the rubber surface and the mode of failure of the joint was mainly interfacial. Chlorination at higher TCI concentration produced a weak chlorinated surface layer which was was mechanically weak, facilitating the failure in this layer during the T-peel test. The thickness of the chlorinated layer created on the treated rubber is about 5 Fm, and the thickness seemed to be independent of the amount of TCI applied to the rubber surface.  相似文献   

10.
Rubber‐toughened polystyrene has been extensively studied and is a well‐established technology. However, the use of thermoplastic elastomers to toughen polystyrene (PS) is new and has the potential for further investigations. In the present study, three EVAs (ethylene–vinyl acetate copolymers) with identical melt flow indices (MFIs), of ~2.5 dgmin?1, but different vinyl acetate (VA) contents, of 9.3 wt% (EVA760), 18.0 wt% (EVA460) and 28.0 wt% (EVA265), were melt blended with PS at 180 °C, and various ASTM test pieces were injection moulded at 200 °C. The polarity of the dispersed phase (ie EVA), has a significant effect on the mechanical properties of the blends. Both mechanical and rheological studies reveal that the uncompatibilised PS/EVA265 blends exhibit some degree of compatibility when the amount of EVA265 is lower than 30 wt%. These results indicate that EVA265 with the highest VA content is the most effective impact modifier for PS. The results clearly show that increasing the VA content in EVA increases the polarity of the dispersed phase, approaching that of the matrix (ie PS) and subsequently improving the compatibility between the two phases in terms of interfacial adhesion. © 2002 Society of Chemical Industry  相似文献   

11.
A new water-based chemical treatment based on sodium dichloroisocyanurate (DCI) solutions for rubber soles of different natures is reported in this study. Different concentrations (1-5 wt%) of DCI and two rubber formulations (vulcanized styrene-butadiene rubber, R2; thermoplastic rubber, TR) were considered. The effects produced by treatment of the rubber soles with DCI were compared with the standard halogenation method using trichloroisocyanuric acid (TCI) solutions in an organic solvent (ethyl acetate). The effects of chlorination on the rubber surfaces were studied using contact angle measurements, ATR-IR spectroscopy, and scanning electron microscopy. The adhesion strength was obtained from T-peel strength tests on canvas/PUD adhesive/treated rubber joints. The adhesive used throughout this study was a water-based polyurethane dispersion (PUD). The surface treatment with aqueous DCI solutions modified the surface chemistry of both the TR and R2 rubbers, creating C—Cl moieties on the surface and removing the zinc stearate from the R2 rubber surface. The use of a low DCI concentration in water was less effective in modifying the TR rubber, but was sufficient to obtain good T-peel strength values for the R2 rubber joints. On the other hand, heterogeneities and cracks were created on the rubber surface (mainly on the R2 rubber surface), which may contribute to an increase in the mechanical interlocking with the adhesive. A noticeable increase in the T-peel strength and a cohesive failure in the rubber for the joints produced with TR rubber were obtained when the rubber was treated with aqueous DCI solutions. For the canvas/PUD adhesive/chlorinated R2 rubber joint, the failure was located in a thin surface layer on the canvas. Finally, the surface treatment with TCI in ethyl acetate produced a more significant surface modification on both the TR and the R2 rubber, creating deeper roughness on the R2 rubber surface. Consequently, higher peel strength values were obtained using TCI solutions in ethyl acetate. Furthermore, the T-peel strength values were high in all joints produced with TR rubber treated with either TCI solution in ethyl acetate or aqueous DCI solution.  相似文献   

12.
Ethylene-vinyl acetate (EVA) copolymers intended for sport sole manufacturing may contain noticeable amounts of polyethylene (LDPE) for improving abrasion resistance and decrease cost; however, this blend (EVA–PE) had low polarity and showed poor adhesion. In this study an effective environmentally friendly and fast surface treatment based on UV–ozone has been used to increase the wettability, polarity and roughness of EVA–PE material. Both the length of the UV–ozone treatment and the distance between the material surface and the UV-radiation source were tested. The UV–ozone treated EVA–PE material was characterized by ATR-IR spectroscopy using Ge prism, water contact angle measurements, X-Ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Adhesion properties were obtained from T peel tests of as-received and UV–ozone treated EVA–PE/polyurethane adhesive/leather joints.The more extended length of treatment and the shorter UV source–substrate distance increased the wettability of the EVA–PE material. Oxidation of the EVA–PE surface was produced by UV–ozone treatment creating new carbonyl groups mainly, and the amounts of hydroxyl and carboxylic groups were increased. The UV–ozone treatment produced ablation and etching of the EVA–PE material surface, mainly in the vinyl acetate, creating a particular roughness consisting on ruffles with deep crevices; this topography was also produced by heating produced during UV–ozone treatment. For low length of UV treatment or high UV source–material distance, the modifications of the EVA–PE material were mainly produced in the ethylene causing the selective removal of vinyl acetate, whereas more aggressive conditions produced strong oxidation in the EVA–PE material. Finally, adhesive strength was noticeably increased in the UV–ozone treated EVA–PE/polyurethane adhesive joints, and a cohesive failure in the leather was obtained.  相似文献   

13.
Ethylene‐vinyl acetate (EVA) nanocomposites with enhanced flame retardance were prepared by the sol–gel process in the melt. Two EVAs with different vinyl acetate (VA) contents and aluminium isopropoxide were used as organic and inorganic phases. The nanocomposites were prepared in a batch mixer under constant processing conditions and were analysed by several characterization techniques. Aluminium isopropoxide presented low activation energy, which allows the synthesis of the nanoparticles without a post step treatment. The reaction mechanism is proposed. Nanocomposites with smaller and well dispersed metal nanoparticles were produced with an EVA with higher VA content. EVA nanocomposites achieve the requirements for 94 V‐0 classification. © 2013 Society of Chemical Industry  相似文献   

14.
Nylon 1010 blends with ethylene–vinyl acetate copolymer (EVA) and maleated ethylene–vinyl acetate (EVA‐g‐MAH) were prepared through melt blending. The vinyl acetate (VA) content and viscosity of EVA significantly affected the notched impact strength of nylon/EVA/EVA‐g‐MAH (80/15/5) blends. The nylon/EVA/EVA‐g‐MAH blends with high notched impact strength (over 60 kJ/m2) were obtained when the VA content in EVA ranged from 28 to 60 wt%. The effect of VA content on the notched impact strength of blends was related to the glass transition temperature for EVA with high VA content and crystallinity for EVA with low VA content. For nylon blends with EVA with the same VA content, low viscosity of EVA led to high notched impact strength. Fracture morphology of nylon/EVA/EVA‐g‐MAH (80/15/5) blends showed that blends with ductile fracture behavior usually had large matrix plastic deformation, which was the main energy dissipation mechanism. A relationship between the notched impact strength and the morphology of nylon/EVA/EVA‐g‐MAH (80/15/5) blends was well correlated by the interparticle distance model. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

15.
Several hot-melts (HMAs) were prepared by using blends of ethylene-co-n-butyl acrylate (EBA) and ethylene-co-vinyl acetate (EVA) copolymers - EBA/EVA. HMAs were prepared with mixtures of EVA copolymers with 18 (EVA18) and 27 (EVA27) wt% vinyl acetate contents and EBA copolymer with 27 wt% n-butyl acrylate, polyterpene resin and mixture of microcrystalline and Fischer-Tropsch waxes. HMAs made with EBA/EVA blends showed lower viscosities and reduced shear thinning than the ones made with EBA or EVA due to differences in compatibility, but both the set time and the open time were not affected as they depended mainly on the wax nature and amount. The increase of the vinyl acetate (VA) content in EVA copolymer reduced the crystallinity of the EBA/EVA blends. Even EBA copolymer was more compatible with EVA27 than with EVA18 (the α- and β-transitions shown in DMTA plots were closer) and the compatibility did not vary with the EBA content in the blends. The addition of polyterpene resin and the mixture of waxes decreased the compatibility of the EBA/EVA blends, the higher compatibility was observed for the HMAs made with only one copolymer. The tack of the HMAs depended on their EBA/EVA contents, EBA/EVA27 HMAs showed broader temperature interval with higher tack, while the tack of EBA/EVA18 HMAs blend decreased and the temperature interval with tack was shortened and shifted to lower temperatures. Adhesion to polypropylene film was improved in HMAs made with 75 wt% EBA/25 wt% EVA18 and 50–75 wt% EBA/50-25 wt% EVA27. The adhesion to aluminum film of EBA or EVA hot melts was improved only in the joints made with EBA/EVA 27 HMAs, more noticeably when they contained higher EBA content.  相似文献   

16.
A series of ethylene vinyl acetate/ethylene–propylene diene elastomer (EVA/EPDM) blends with four types of EVAs with various vinyl acetate (VA) content, are prepared without and with crosslinker, trimethylol propane triacrylate (TMPTA). These are irradiated by electron beam (EB). As the VA content increases, the gel content, i.e., degree of crosslinking of EVA/EPDM blends, is increased. With increase in VA content, the modulus and tensile strength are decreased but elongation at break is increased due to increase in amorphousness. On EB irradiation, modulus and tensile strengths are increased but at the cost of elongation at break. Crystallinities of all blends are decreased with increase in VA and EB crosslinking. The thermal stability of EVA/EPDM blend is decreased with increase in VA content but increased after EB irradiation. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) show that with increase in VA content the miscibility of two polymers keeps on increasing, which even become more after EB irradiation. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43468.  相似文献   

17.
Aromatic hydrocarbon resins with different molecular weights (Mw = 1300-50400 daltons) were added to a solvent-based polychloroprene adhesive. The hydrocarbon resins were characterized using infra-red (IR) and differential scanning calorimetry (DSC) measurements. The properties and compatibility of the polychloroprene/resin blends were studied using mechanical tests, DSC measurements, scanning electron microscopy (SEM), and stress-controlled rheology. Tack measurements were also carried out and the adhesion strength was obtained from T-peel tests on roughened styrene-butadiene rubber/polychloroprene adhesive joints. The addition of low-molecular-weight tackifiers produced a compatible polychloroprene/tackifier system (only one Tg was found in DSC measurements), while the addition of a high-molecular-weight (and broad molecular weight distribution) tackifier produced a partially incompatible system (two Tg's were found in DSC measurements). The compatibility of polychloroprene/tackifier blends was also assessed with stress-controlled rheology and SEM. An increase in the T-peel strength and tack were produced when the molecular weight of the tackifier increased, although the addition of a hydrocarbon resin with a Mw higher than about 50 000 reduced the tack. A broad molecular weight distribution in the tackifier favoured incompatibility with the polychloroprene, resulting in a reduction in the tack and rheological properties.  相似文献   

18.
Surface modifications produced by treatments (mainly halogenation) of synthetic vulcanized styrene-butadiene rubber (SBR) leading to increased adhesion properties with polyurethane adhesives have been studied. T-peel tests, scanning electron microscopy (SEM), advancing contact angle measurements, infra-red (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and differential scanning calorimetry (DSC) were used to analyze the nature of surface modifications produced in the rubber. Although some surface heterogeneities were created, physical treatments (ultrasonic cleaning, solvent wiping, abrasion) did not noticeably increase the adhesion strength because certain abhesive substances (e.g. zinc stearate, paraffin wax) cannot be removed from the rubber surface by such treatments. Chemical treatment (chlorination) was carried out using ethyl acetate solutions of trichloroisocyanuric acid (TCI) (1,3,5-trichloro-1,3,5-triazine-2,4,6-trione). Chlorination of SBR with trichloroisocyanuric acid produced a significant improvement in T-peel strength, due to the contribution of mechanical (surface roughness, microcracks), thermodynamical (increase of polar contribution to the surface energy) and chemical (removal of abhesive substances, creation of polar groups) rubber surface modifications. The strong adhesion between the chlorinated SBR surface and the polyurethane adhesive was due to the presence of oxidized species of >C=O, -C-OH and -COR type. Chlorination of SBR is a fast reaction which needs only a small concentration of chlorination agent (< 1 wt% TCI/ethyl acetate) to produce high adhesion levels. An increased amount of TCI facilitated the chlorination reaction progressing from the exterior to the internal rubber bulk; however, although a thicker layer of chlorinated rubber created no further increase in adhesion strength was obtained.  相似文献   

19.
Three ethylene vinyl acetate (EVA) copolymers with different vinyl acetate (VA) contents (28-40 wt%) were mixed with rosin ester and polyterpene resin tackifiers in a 1 : 1 (weight/weight) ratio. The rheological and thermal properties of the tackifiers were determined and the use of rheological measurements as a precise way to measure the softening point of the tackifiers is proposed. The glass transition temperature of the tackifiers was obtained from the second heating run, after the thermal history of the tackifiers was removed. The addition of the rosin ester to EVA produced a compatible mixture, whereas for the terpene resin a less compatible mixture was obtained. The increase in the VAamount decreased the crystallinity of EVAand both the storage and the loss moduli also decreased, but the peel strength and the immediate adhesion were increased. The immediate adhesion of EVA/tackifier blends was affected by both the compatibility and the rheological properties of the blends. In fact, a relationship between the mechanical storage modulus (Et′) - obtained from DMTA experiments - of the adhesives and the immediate adhesion to thin rubber substrates was obtained. The adhesives containing the T tackifier showed higher moduli than those containing the G tackifier, and therefore higher peel strength values were obtained. An increase in the VA content increased the flexibility of the adhesives and thus a decrease in peel strength was obtained.  相似文献   

20.
A series of ethylene vinyl acetate (EVA)/ethylene‐propylene diene elastomer (EPDM) blends (50/50 ratio) with four types of EVAs were prepared using brabender type batch mixer followed by compression molding. All compression‐molded samples were exposed to gamma radiation at 500, 1000, and 1500 kGy doses and were subjected to mechanical, compression set, thermal and morphological test. The % retention in tensile strength, elongation, and hardness were found higher for higher vinyl acetate (VA) containing radiation aged EVA/EPDM blends. The compression set value was decreased with increase of VA content. The thermal degradation kinetics of high VA containing irradiated blend (EVA40/EPDM) (EVA40 is 40%VA containing EVA) was found slower than those of lower VA containing blend (EVA18/EPDM). The surface morphology for EVA18/EPDM sample was transformed into more irregular one with more cracks and fragmented segments by aging at 1500 kGy dose while surface for EVA40/EPDM sample was found comparatively smooth, fine, and continuous with very few cracks and fragmented parts at similar dose. Thus, from the measured properties and morphology, it was revealed that the degree of degradation of blends kept on decreasing with increase in VA content. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46216.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号