首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
一种带隙基准源分段线性补偿的改进方法   总被引:1,自引:0,他引:1  
为了减小带隙基准源的温度系数和提高温度补偿的灵活性,设计了一种改进型分段线性补偿方法。利用双极型晶体管的温度非线性在整个温度区域内产生7段不同斜率的补偿电流,通过电流模形式对基准电压的高阶温度分量进行叠加,进而对带隙基准电压实现精确温度补偿。基于0.25μm BCD工艺设计了一款低温漂高精度的带隙基准源。HSPICE仿真结果表明,在5 V电源电压下,在-40℃~125℃温度范围内,基准电压的温度系数为0.37×10-6/℃,低频时电路的电源抑制比为-85 dB。电源电压在2 V~5 V范围内,基准电压的线性调整率为0.09 mV/V。  相似文献   

2.
一种低功耗高精度带隙基准的设计   总被引:2,自引:0,他引:2  
基于U MC 0.25μm BCD工艺,在传统带隙基准结构的基础上,设计了一种具有低功耗、高精度的基准,同时利用N MOS管工作在亚阈值区域时漏电流和栅极电压的指数特性,对基准温度特性曲线进行二阶补偿。仿真结果表明,电源电压5V时,静态电流功耗为3.16μA;电源电压2.5 V~5.5 V,基准电压变化53μV;温度在-40℃~130℃内,电路的温度系数为0.86×10-6/℃;三种工艺角下,低频时电路电源抑制比都小于-95 d B。  相似文献   

3.
为了满足温度传感器芯片对带隙基准源高性能的要求,设计了一种高精度低温度系数带隙基准源。该带隙基准源利用电阻比值校正了一阶温度系数带隙基准电路的非线性温度特性,使得输出的基准电压的精度和温度系数有了很大提高。采用0.8μm BiCMOS(Bipolar-CMOS)工艺进行流片,带隙基准电路所占面积大小为0.04mm???2。测试结果表明:在5V电源电压下,在温度-40~125℃范围内,基准电压的温度系数为1.2×10-5/℃,基准电流的温度系数为3.77×10-4/℃;电源电压在4.0~7.0V之间变化时,基准电压的变化量为0.4 mV,电源调整率为0.13mV/V;基准电流的变化量为变化量约为0.02μA ,电源调整率为6.7nA /V。  相似文献   

4.
李新  洪婷  高加亭 《微处理机》2009,30(5):13-15
基于0.5μm双层多晶双层铝CMOS工艺,采用共源共栅电流镜结构和基极电流补偿方法,设计了一种新颖的高性能带隙电压基准.结果表明,在温度-25℃~125℃范围,基准电压温度系数为15.3×10-6V/℃,低频时,电源抑制比可达-80db.该电路可做为A/D和D/A转换器中的基准电压源.  相似文献   

5.
本文设计了一种适用于DC—DC转换器的带隙基准电压源,在0.18μm的SI MC工艺下,采用Cadence Spectre对电路进行仿真分析。结果表明,在5V的电源电压下,基准输出电压为1.214 V,在-40~+85℃范围内,基准电压的温度系数为2.46x 10-6/℃。  相似文献   

6.
设计了一种利用电阻比值校正一阶温度系数带隙基准电路的非线性温度特性来实现低温度系数的高精度低温度系数带隙基准源;同时设置了修调电路提高基准电压的输出精度.该带隙基准源采用0.8μm BiCMOS(Bipolar-CMOS)工艺进行流片,带隙基准电路所占面积大小为0.04 mm2.测试结果表明:在5 V电源电压下,在温度-40℃~125℃范围内,基准电压的温度系数为1.2×10-5/℃,基准电流的温度系数为3.77×10-4/℃;电源电压在4.0 V~7.0 V之间变化时,基准电压的变化量为0.4 mV,电源调整率为0.13 mV/V;基准电流的变化量为变化量约为0.02μA,电源调整率为6.7 nA/V.  相似文献   

7.
因为传统的带隙电压基准源只经过了一阶温度补偿,且输出电压只能在1.2 V左右,所以为了得到一个可调的、更高精度的电压基准源,提出了电流模式的带隙电压基准源电路。电路采用了高阶曲率补偿方法,且输出的基准电压可根据输出电阻的大小进行调节。电路采用gpdk090 CMOS工艺,通过Spectre仿真,当电源电压为3.6 V、在-60℃~-120℃温度范围内、温度系数为14.4×10-6/℃时电源电压抑制比为78.3 d B,输出电压平均为1.162 V。  相似文献   

8.
提出了一种可用于标准CMOS工艺下且具有二阶温度补偿电路的带隙基准源。所采用的PTAT2电流电路是利用了饱和区MOSFET的电流特性产生的,具有完全可以与标准CMOS工艺兼容的优点。针对在该工艺和电源电压下传统的启动电路难以启动的问题,引入了一个电阻,使其可以正常启动。基准核心电路中的共源共栅结构和串联BJT管有效地提高了电源抑制比,降低了温度系数。基于TSMC 0.35μm CMOS工艺运用HSPICE软件进行了仿真验证。仿真结果表明,在3.3V供电电压下,输出基准电压为1.2254V,温度系数为2.91×10-6V/℃,低频的电源抑制比高达96dB,启动时间为7μs。  相似文献   

9.
设计了一种应用于物联网芯片的极低功耗电压基准源。由于漏致势垒降低(Drain-Induced Barrier Lowering,DIBL)效应,栅致漏极泄漏(Gate-Induced Drain Leakage, GIDL)效应及栅-漏电容馈通效应的影响,传统的基于MOS管漏电流的皮安级电压基准源虽然可以实现较低的温度系数,但是线性调整率及电源抑制比(Power Supply Rejection Ratio, PSRR)过低,大大限制了其在具有高电源噪声的物联网芯片中的应用。在传统的双MOS管电压基准源基础上,基于0.18μm CMOS工艺,设计了一种新型的自稳压五MOS管电压基准源。Spectre仿真结果显示,0~120℃范围内,该自稳压五MOS管电压基准源的平均温度系数为39.2 ppm/℃;电源电压1.0~2.0 V范围内,该电压基准源的线性调整率为33.4 ppm/V;负载电容3 pF情况下,该电压基准的PSRR性能为-9 dB@0.01 Hz及-62 dB@100 Hz。另外,在该0.18μm CMOS工艺下,该电压基准的电流消耗仅为59 pA@27℃,版图面积仅为5 400μm~2。  相似文献   

10.
利用负反馈技术设计了一款基于CMOS亚阈值MOS器件的低压高性能CMOS基准源电路。基于SMIC 0.18μm标准CMOS工艺,Cadence Spectre仿真结果表明:所设计的基准电路能在0.8V电压下稳定工作,输出380.4mV的基准电压;在1kHz频率范围内,电源噪声抑制比为-56.5dB;在5℃到140℃范围内,温度系数6.25ppm/℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号