首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The thermal oxidation of copper leadframe was carried out at 175°C and the adhesion behavior of the epoxy/copper leadframe joint was analyzed by investigating the microstructure changes of copper oxide with the thermal oxidation time of copper. The peel strength increased sharply at an early stage of oxidation (~20 min) followed by a slight increase. After further oxidation (120 min), the peel strength showed a slight decrease. The contact angles of water and diiodomethane decreased sharply at an early stage of oxidation with negligible change afterwards. As the oxidation time increased, X-ray photoelectron spectroscopy (XPS) results revealed that the chemical composition of copper oxide had changed (Cu/Cu2O → Cu2O → CuO); this change improved the wettability of the copper surface, which affected the peel strength. Increase of the surface roughness of copper oxide, investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM), causes the epoxy resin and copper oxide to undergo mechanical interlocking, which increases the peel strength. Failure analysis by SEM and XPS indicated that failure was largely in the copper oxide, and the amount of copper oxide on the peeled epoxy increased as the oxidation time increased, due to the weak mechanical strength of the oxide layer. However, a small portion of the epoxy resin was also fractured during the failure process, regardless of the oxidation time. Consequently, fracture proceeded mainly in the copper oxide close to the epoxy resin/copper oxide interface.  相似文献   

2.
The adhesion strength between electroless copper and acrylonitrile-butadiene-styrene (ABS) resin can be improved significantly by an environmentally friendly etching system containing H2SO4–MnO2 colloid as a replacement for conventional chromic acid etching solutions. In this paper, the effects of the H2SO4 concentration and ultrasound-assisted treatment (UAT) on the surface roughness and adhesion strength were investigated. When the H2SO4 concentration was 11.8~12.7 M, good etching was obtained. With UAT, many uniform cavities formed on the ABS surface with the average surface roughness (R a) and maximum roughness (R max) of ABS substrates decreasing from 386 and 397 nm to 278 and 285 nm, respectively, which were much lower than that etched by CrO3–H2SO4 colloid (420 and 510 nm, respectively). The average adhesion strength increased from 1.29 to 1.39 kN/m, which was close to that obtained with chromic acid etching treatment (1.42 kN/m). The surface contact angle measurement indicated that the density of the polar groups on the ABS surface increased with increasing time of UAT. The results indicated that surface etching with UAT not only improved the uniformity of cavities, but also enhanced the oxidation rate of ABS resin, which in turn resulted in greater adhesion strength and a lower surface roughness.  相似文献   

3.
Interfacial properties of polymers and their control become important at submicrometer scales, as polymers find widespread applications in industries ranging from micro- and nanoelectronics to optoelectronics and others fields. In this work, we address the issue of controlled modification of surface topography of Si-containing polymers when subjected to oxygen-based plasma treatments. Treated surfaces were examined by atomic force microscopy to obtain surface topography and roughness of plasma-treated surfaces. Our experimental results indicate that an appropriate optimization of plasma chemistry and processing conditions allows, on one hand, small values of surface roughness, a result crucial for the potential use of these polymers for sub-100 nm lithography, and, on the other hand, desirable topography, applicable for example in sensor devices. Plasma processing conditions can be modified to result either in smooth surfaces (rms roughness < 1 nm) or in periodic structures of controlled roughness size and periodicity.  相似文献   

4.
The effects of surface-hardening processes on the changes in surface characteristics and adhesion of black copper oxide substrate with epoxy resins are studied. Various techniques, namely SEM, XPS, AFM, XRD, Auger electron spectroscopy, contact angle goniometry, D-SIMS and RBS, were used to identify the changes in surface characteristics. Dense, fibrillar cupric oxide crystals characterized the as-deposited oxide coating with high surface roughness. The surface-hardening process flattened and consolidated the fibrils without changing the compositional and thermodynamic characteristics of the coated surface. The surface-hardening process reduced the total thickness of copper oxide by approximately 50–150 nm. The reduction in oxide thickness was not a predominant factor for the reduced bond strength of the surface-hardened coating. The bond strengths of both the as-deposited and surface-hardened black oxide coatings increased with oxidation time, until saturation at about 120–150 s. For the as-deposited oxide coating, mechanical interlocking, high wettability and resistance to surface contamination are the three major sources for improved adhesion, amongst which the enhanced mechanical interlocking provided by the fibrillar cupric oxide is the most important. Surface hardening reduced the efficiency of mechanical interlocking mechanism. There was close functional dependence between the button-shear strength and surface characteristics, such as surface roughness, coating thickness and surface free energy.  相似文献   

5.
介绍了压延铜箔镀铜粗化工艺的工艺流程和工艺条件。讨论了粗化处理及固化处理过程中铜离子含量、硫酸含量及电流密度等因素对压延铜箔表面质量及抗剥离强度的影响。得到了适合压延铜箔的粗化条件(20g/LCu2 ,70g/L的硫酸,适量添加剂,Jk=40~50A/dm2,θ=30°C,t=3~5s)和固化条件(60~70g/LCu2 ,90~105g/L硫酸,适量添加剂,Jk=20~30A/dm2,θ=50°C,t=6~8s)。经该粗化工艺处理后的压延铜箔与印制板基板结合力良好。  相似文献   

6.
The effects of three types of chemical treatments, i.e. as polar acidic, polar basic, and nonpolar oxidations, on virgin carbon blacks have been studied in terms of pH, acid-base surface values, specific surface area, X-ray diffraction analysis, and surface free energy. The acidic chemical treatment leads to significant changes in surface and adsorption properties, surface free energy, and microstructures. The increased acidic surface functional groups on carbon blacks result from reaction between the basic carbon and the acidic chemical solution. Also, based on the determination of surface free energy from contact angle measurements, a good correlation between the London dispersive component or apolar (γd s) of surface free energy and specific surface area (SBET) (or crystalline size S along the c-axis, LC) is shown in this work. Particularly, it is found that the γd s of the carbon blacks studied is highly correlated with the mechanical tearing test results based on hydrocarbon rubber compound composites.  相似文献   

7.
Poly(phenylene sulfide) (PPS) films were modified by Ar, O2, N2 and NH3 plasmas in order to improve their adhesion to copper metal. All four plasmas modified the PPS film surfaces, but the NH3 plasma modification was the most effective in improving adhesion. The NH3 plasma modification brought about large changes in the surface topography and chemical composition of the PPS film surfaces. The peel strength for the Cu/plasma-modified PPS film systems increased linearly with increasing surface roughness, R a or R rms, of the PPS film. The plasma modification also led to considerable changes in the chemical composition of the PPS film surfaces. A large fraction of phenylene units and a small fraction of sulfide groups in the PPS film surfaces were oxidized during the plasma modification process. Nitrogen functional groups also were formed on the PPS film surfaces. The NH3 plasma modification formed S—H groups on the PPS film surfaces by reduction of S—C groups in the PPS film. Not only the mechanical interlocking effect but also the interaction of the S—H groups with the copper metal may contribute to the adhesion of the Cu/PPS film systems.  相似文献   

8.
Although an adhesive joint can distribute the load over a larger area than a mechanical joint, requires no holes, adds very little weight to the structure and has superior fatigue resistance, but it not only requires a careful surface preparation of the adherends but also is affected by service environments. In this paper, suitable conditions for surface treatments such as plasma surface treatment, mechanical abrasion, and sandblast treatment were investigated to enhance the mechanical load capabilities of carbon/epoxy composite adhesive joints. A capacitively coupled radiofrequency plasma system was used for the plasma surface treatment of carbon/epoxy composites and suitable surface treatment conditions were experimentally investigated with respect to gas flow rate, chamber pressure, power intensity, and surface treatment time by measuring the surface free energies of treated specimens. The optimal mechanical abrasion conditions with sandpapers were investigated with respect to the mesh number of sandpaper, and optimal sandblast conditions were investigated with respect to sandblast pressure and particle size by observing geometric shape changes of adherends during sandblast process. Also the failure modes of composite adhesive joints were investigated with respect to surface treatment. From the peel tests on plasma treated composite adhesive joints, it was found that all composite adhesive joints failed cohesively in the adhesive layer when the surface free energy was higher than about 40 mJ/m2, because of high adhesion strength between the plasma treated surface and the adhesive. From the peel tests on mechanically abraded composite adhesive joints, it was also found that the optimal surface roughness and adhesive thickness increased as the failure load increased.  相似文献   

9.
10.
印制板用铜箔表面处理工艺研究进展   总被引:3,自引:0,他引:3  
铜箔是制造印制板的关键性导电材料,它的性能与其表面处理工艺密切相关。着重介绍了一些常用的电解铜箔表面处理工艺规范和镀层特点,概述了当前铜箔表面处理工艺包括高温耐热表面处理、双面铜箔表面处理、超薄铜箔表面处理、高抗张性铜箔表面处理和高频电路用铜箔表面处理等工艺的研究现状。展望了印制板用铜箔的发展趋势。  相似文献   

11.
The surface modification of Ar plasma-pretreated poly(tetrafluoroethylene) (PTFE) films via UV-induced graft copolymerization with either 3-(trimethoxysilyl)propyl methacrylate (TM-SPMA) or glycidyl methacrylate (GMA) was carried out to enhance their adhesion to electrolessly deposited copper. The surface compositions of the PTFE films at various stages of surface modification and electroless plating were studied by X-ray photoelectron spectroscopy (XPS). The adhesion strength of the graft-copolymerized PTFE film to the electrolessly deposited copper was affected by the type of monomer used for graft copolymerization, the graft concentration, the plasma post-treatment time after graft copolymerization, and the extent of thermal post-treatment after metallization. The maximum T-peel strength achieved between the electrolessly deposited copper and the GMA graft-copolymerized PTFE film was about 11 N/cm. This adhesion strength represented a more than 20-fold increase over what could be achieved when the PTFE film was treated by Ar plasma alone. The mechanisms of the adhesion strength enhancement and the failure mode in the metal-polymer laminates were also investigated. It was found that the failure was cohesive in nature within the PTFE film.  相似文献   

12.
Abstract

The surface quality of polymer composite laminates was examined via geometric modelling techniques and compared to experimental data. TexGen software provided the platform for the development of a surface roughness simulation tool which accounted for textile architecture and specific cure kinetics of the matrix. The study focused on the influence of thermal and chemical shrinkage during cure and the change in localised volume fraction across the surface of a unit cell. A one-dimensional analysis was used to determine proportional dimensional changes to the matrix region, with the results stitched together to form a three-dimensional topological plot. Three demonstrator geometric models were developed to represent a carbon 2 × 2 twill weave fabric with 3000, 6000 or 12 000 tows. These models were analysed with low and high shrink resin properties. Optical microscopy was used to determine accurate tow forms for compacted tows which aided the development of the geometric model. Simulated profiles, topography and surface roughness measures were compared to experimental data which demonstrated the significance of matrix contraction and fabric architecture on the final surface quality. The simulations were shown to represent experimental data typically within 6%.  相似文献   

13.
Titanium is the most widely used material for dental implants, due to its desirable properties, e.g., high biocompatibility, low density, high stiffness and strength, etc. More importantly, titanium implants may osseointegrate with living bone, meaning that new bone grows directly onto the surface of the implant, without any intermediate soft tissue layer. A successfully osseointegrated implant generally has a strong bonding to the adjacent bone; consequently, it usually functions well and remains stable for long service period. It also has been clinically proven that surface treatment methods can improve the rate and quality of titanium implants' osseointegration. This article focuses on two such methods, i.e., surface roughening and hydroxyapatite (HA) coating. In addition, we discuss a promising new methodology, which attempts to modify the surface charge of titanium materials. This paper focuses on the current best surface treatment methods for titanium dental implants developed and improved in the past two decades, i.e., 1990–2010.  相似文献   

14.
Black oxide is a conversion coating applied onto the copper substrate to improve its interfacial adhesion with polymeric adhesives. A comprehensive study is made to characterize the black oxide coating using various characterization techniques, including SEM, XPS, AFM, XRD, Auger electron spectroscopy, TEM, D-SIMS, RBS and contact angle measurements. It was found that the oxide coating consisted of cupric and cuprous oxide layers from the top surface to inside. The cuprous oxide layer was formed on the copper crystal surface, on which densely-packed fibrillar cupric oxide grew continuously until saturation. The cupric oxide had a fibrillar structure with high roughness at the nanoscopic scale, whereas the cuprous oxide was rather flat and granular. There was a continuous change in oxide composition with no distinct boundary between the two oxide layers. The bond strength between the epoxy resin and the oxide coated copper substrate increased rapidly at a low level of oxide thickness, and became saturated at thicknesses greater than about 800 nm. There were similar dependences of bond strength on surface roughness, oxide thickness especially of cupric oxide and surface energy, reflecting the importance of these surface characteristics in controlling the interfacial adhesion.  相似文献   

15.
Heat-resistant adhesive RTV88 is a hyper-elastic material and so far there have been little research on using RTV88 in adhesive joints. In this study, the effect of surface roughness on the adhesive strength of RTV88 was examined. Aluminum adherends were first sandblasted in order to generate rough surfaces, and then tensile–shear tests on Al/RTV88 single lap joints were performed. The shear strength was shown to be influenced by surface roughness. Peel failure was dominant when the surface roughness was at a low level. However, cohesive failure was the major type of failure when the surface roughness was at a high level. Effective area, peel failure area, and cohesive failure area were introduced to explain the effects of surface roughness on the adhesive strength. An empirical relation for the failure force was proposed, based on these parameters. Tensile tests of the RTV88 bonding was performed in order to obtain the necessary data. Finally, the empirical relation for the failure force was verified by tensile–shear test results.  相似文献   

16.
The surface properties of polymer membranes are very important to their separation performance. It is generally accepted that a hydrophilic membrane surface is favorable for applications in water treatment and bioseparation, because the hydrophilic surface can enhance water permeate flux and mitigate membrane fouling. Microporous polypropylene membrane (MPPM) is a promising membrane material for membrane distillation and membrane gas–liquid contactor, due to the intrinsically high hydrophobicity of polypropylene. However, it is the hydrophobicity that severely limits the wider application of MPPM in aqueous solutions and biomedical fields. Surface hydrophilization is, therefore, logically necessary. Surface engineering of polymer membranes encompasses those processes which modify the membrane surfaces to confer different properties to those of the bulk and thus improve their in-service performance. This review provides a concise summary and discussion of the surface engineering strategies developed in our laboratory and reported in scientific literature, which aim at enhancing the surface hydrophilicity and antifouling property of MPPM.  相似文献   

17.
The surface treatment of spherical silica particles with silane coupling agent having mercapto group was carried out and structure and amount of silane nanolayer formed on silica surface were analyzed using 1H pulse nuclear magnetic resonance (NMR) and thermogravimetric analysis, respectively. Effects of loading amount and number of alkoxy groups of silane on the structure were investigated. Silanes with dialkoxy and trialkoxy structures were used as silane coupling agents and the loading amount of the silane on the silica surface was varied from one to nine times the amount required for monolayer coverage. The relaxation time was longer in the dialkoxy type than in the trialkoxy type of silane. The relaxation time increased with increase of the loading amount of silane for the dialkoxy type; on the other hand, there was no influence of the loading amount of silane for the trialkoxy type. It was found that the silane structure was flexible for the dialkoxy type, whereas it was rigid for the trialkoxy type. Effect of mixing ratio of silane coupling agents having di- and trialkoxy groups on the silane nanolayer structure was also investigated, and 1H pulse NMR studies confirmed that the relaxation time measured for the mixed silane-treated system was between those for the dialkoxy and the trialkoxy structures and depended on the mixing ratio. It was found that the network density of silane-treated layer on silica particles could be controlled by varying the molar ratio of dialkoxy/trialkoxy silane coupling agents.  相似文献   

18.
Adhesion hysteresis is defined as the difference between the work needed to separate two surfaces and that originally gained on bringing them together. Adhesion hysteresis is a common phenomenon in most surface/interface interactions. This paper studies the effects of surface roughness on adhesion hysteresis. We assumed that the surface asperity height distribution is Gaussian. Numerical simulations based on Fuller's model showed that adhesion hysteresis depended upon a single dimensionless parameter, the adhesion parameter, which represents the statistical average of a competition between the compressive forces exerted by the higher asperities, which are trying to separate the surfaces, and the adhesion forces of the lower asperities which are trying to hold the surfaces together.  相似文献   

19.
Poly(tetrafluoroethylene) (PTFE) film surfaces were exposed to vacuum UV (VUV) radiation from He dc arc plasmas that were made to rotate inside a graphite tube by the application of an auxiliary magnetic field. The films were covered with optical filters having different cutoff wavelengths to vary the VUV radiation that modified the fluoropolymer surface. Photo-etching was detected, as well as surface modification that showed the following: (1) water contact angles decreasing with wavelengths of 173 nm or shorter; (2) surface roughening; (3) defluorination of the surface and formation of cross-linking bonds in the top 10 nm of the surface as detected by XPS analysis; and (4) incorporation of oxygen upon exposure to air. An improvement in the adhesion of copper to these modified surfaces was observed.  相似文献   

20.
The present work deals with two different surface modification techniques for altering the surface properties of polymers: plasma treatment and ion implantation. Polymer foils were exposed in an inductively-coupled r.f. (13.56 MHz) plasma system with and without applying a negative high voltage pulse to the sample stage. The influence of low pressure plasmas of oxygen, nitrogen, or argon on the chemical composition, topography, and wettability of polymer surfaces was studied in detail. Etch rates of poly(ethylene terephthalate) for different plasma parameters were monitored. The polymer surface was also modified by a high energy ion beam process. Polyimide films were implanted with different ion species such as Ar+, N+, C+, He+, and O+ at doses from 1 × 1015 to 1 × 1017 ion/cm2. Ion energy was varied from 10 to 60 keV for the plasma source ion implantation (PSII) experiment. Polyimide samples were also implanted with 1 MeV hydrogen, carbon, and oxygen ions at a dose of 1 × 1014 ion/cm2. Depending on the ion energy, dose, and ion species, the surface resistivity of the film was reduced by several orders of magnitude. A study on the plasma-treated and ion beam-treated polymer surfaces was performed using TOF-SIMS, XPS, SEM, AFM, and water contact angle measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号