首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cure reaction and phase separation mechanism of a cyanate ester‐cured epoxy and its blends with polyphenylene oxide (PPO) were studied. An autocatalytic mechanism was observed for the epoxy and its blends. The reaction rate of the blends was higher than that of the neat epoxy at initial stage; however, the reached conversion decreased with PPO content. FTIR analysis revealed that the cyanate functional group reactions were accelerated by adding PPO and indicated that several coreactions have occurred. This was caused by the reaction of cyanate ester with the PPO reactive chain ends. But at a later stage of cure, the reaction could not progress further due to diffusional limitation of PPO. To understand the relationship between the cure kinetics and phase separation of the blends, the morphology of the blends during cure was examined. When the homogeneous epoxy/PPO blends with low PPO content (10 phr) were cured isothermally, the blends were separated by nucleation and growth (NG) mechanism to form the PPO particle structure. But at high PPO content (30 phr), the phase separation took place via spinodal decomposition (SD). SD is favored near critical concentration and high cure rate system. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:1139–1145, 2006  相似文献   

2.
Cure behavior, miscibility, and phase separation have been studied in blends of polyphenylene oxide (PPO) with diglycidyl ether of bisphenol A (DGEBA) resin and cyanate ester hardener. An autocatalytic mechanism was observed for the epoxy/PPO blends and the neat epoxy. It was also found that the epoxy/PPO blends react faster than the neat epoxy. During cure, the epoxy resin is polymerized, and the reaction‐induced phase separation is accompanied by phase inversion upon the concentration of PPO greater than 50 phr. The dynamic mechanical measurements indicate that the two‐phase character and partial mixing existed in all the mixtures. However, the two‐phase particulate morphology was not uniform especially at a low PPO content. In order to improve the uniformity and miscibility, triallylisocyanurate (TAIC) was evaluated as an in situ compatibilizer for epoxy/PPO blends. TAIC is miscible in epoxy, and the PPO chains are bound to TAIC network. SEM observations show that adding TAIC improves the miscibility and solvent resistance of the epoxy/PPO blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 26–34, 2000  相似文献   

3.
—As the applications of composite structures have increased, various techniques to join composite parts to the structures have been developed in order to meet the required adhesion strength. In this work, surface modification of carbon/epoxy composites was investigated using ultraviolet (UV) surface treatment to increase the adhesion strength between the carbon/epoxy composite and the epoxy adhesive. After UV surface treatment, X-ray photoelectron spectroscopy (XPS) analysis and contact angle measurements were performed to analyze the surface characteristics of the carbon/epoxy composites. From the results of XPS analyses and adhesion strength tests, it was found that the increase of C O bond density on the surface of carbon/epoxy composite caused the enhancement of adhesion strength. Also it was found that the UV-B (wavelength 280–315 nm) surface treatment resulted in a superior adhesion strength compared to the UV-A (wavelength 315–400 nm) surface treatment.  相似文献   

4.
Although an adhesive joint can distribute load over a larger area than a mechanical joint, requires no holes, adds very little weight to structures and has superior fatigue resistance, it requires careful surface preparation of adherends for reliable joining and low susceptibility to service environments. The load transmission capability of adhesive joints can be improved by increasing the surface free energy of the adherends with suitable surface treatments. In this study, two types of surface treatment, namely the low pressure and the atmospheric pressure plasma treatment, were performed to enhance the mechanical load transmission capabilities of carbon/epoxy composite adhesive joints. The suitable surface treatment conditions for carbon/epoxy composite adhesive joints for both low and atmospheric pressure plasma systems were experimentally investigated with respect to chamber pressure, power intensity and surface treatment time by measuring the surface free energies of the specimens. The change in surface topography of carbon/epoxy composites was measured with AFM (Atomic Force Microscopy) and quantitative surface atomic concentrations were determined with XPS (X-ray Photoelectron Spectroscopy) to investigate the failure modes of composite adhesive joints with respect to surface treatment time. From the XPS investigation of carbon/epoxy composites, it was found that the ratio of oxygen concentration to carbon concentration for both low and atmospheric pressure plasma-treated carbon/epoxy composite surfaces was maximum after about 30 s treatment time, which corresponded with the maximum load transmission capability of the composite adhesive joint.  相似文献   

5.
Three-ply composite laminates prepared from E-glass or N-glass chopped strand mats (CSMs) and jute (J) fabrics as reinforcing agents and amine-cured epoxy resin as the matrix material were subjected to dynamic mechanical thermal analysis at a fixed frequency of 1 Hz over a temperature range of 30–180°C. The volume fraction of fibers ranged between 0.21 and 0.25. The reinforcing effect for the three fibers is in the order E-glass > N-glass ≫ jute. Glass-reinforced composites show a higher storage modulus (E′) than that of jute-reinforced composites. The E′ values of glass-jute hybrid composites lie between those of glass-reinforced and jute-reinforced composites. Odd trends in temperature variability of the loss modulus (E′) and the damping parameter, tan δ, and in the glass transition temperature (Tg) for the three different unitary and four different hybrid composites are interpreted and understood on the basis of odd differences in (1) the chemical nature and physical properties of the three different fibers (E-glass, N-glass, and jute), (2) the void content and distribution, (3) the thermal expansion coefficients of the main phases in the composites, (4) the degree of matrix stiffening at or near the fiber-matrix interface, and (5) the extents of matrix softening in the zone next to the interface. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 2467–2472, 1997  相似文献   

6.
High-performance Kevlar fiber had extensively been explored to upgraded mechanical properties of the advanced composites. Therefore, this study aimed a challenging work to grow carbon nanofibers onto the Kevlar fiber to improve its fiber-matrix interaction properties. It was successfully done through inexpensive flame deposition as well as modification of matrix with hybrid resin using polyurethane-epoxy mixture. A hand-layup method had been adopted to manufacture the composite laminates. The chemical and surface structures of the prepared laminae were examined by scanning electron microscopy, Raman spectroscopy, X-ray diffraction, and the composite's properties were evaluated tensile test, compact tension (CT) fracture test, fractography, and differential scanning calorimetry. The surface modified Kevlar laminae with CNF were used as reinforcing layer in the epoxy and PU/epoxy hybrid resin matrices. CNF-coated heated Kevlar reinforced laminated PU/epoxy hybrid composites (CNF-Kev/PU-Epoxy) showed highest elongation 47% and fracture toughness (11.7 MPa√m) along with good UTS 139 MPa. Therefore, these hybrid nanocomposites developed by simple inexpensive method would be the potential candidates for several advanced applications particularly in defense, automobile, aerospace, and spacecraft applications. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48802.  相似文献   

7.
Although an adhesive joint can distribute the load over a larger area than a mechanical joint, requires no holes, adds very little weight to the structure and has superior fatigue resistance, but it not only requires a careful surface preparation of the adherends but also is affected by service environments. In this paper, suitable conditions for surface treatments such as plasma surface treatment, mechanical abrasion, and sandblast treatment were investigated to enhance the mechanical load capabilities of carbon/epoxy composite adhesive joints. A capacitively coupled radiofrequency plasma system was used for the plasma surface treatment of carbon/epoxy composites and suitable surface treatment conditions were experimentally investigated with respect to gas flow rate, chamber pressure, power intensity, and surface treatment time by measuring the surface free energies of treated specimens. The optimal mechanical abrasion conditions with sandpapers were investigated with respect to the mesh number of sandpaper, and optimal sandblast conditions were investigated with respect to sandblast pressure and particle size by observing geometric shape changes of adherends during sandblast process. Also the failure modes of composite adhesive joints were investigated with respect to surface treatment. From the peel tests on plasma treated composite adhesive joints, it was found that all composite adhesive joints failed cohesively in the adhesive layer when the surface free energy was higher than about 40 mJ/m2, because of high adhesion strength between the plasma treated surface and the adhesive. From the peel tests on mechanically abraded composite adhesive joints, it was also found that the optimal surface roughness and adhesive thickness increased as the failure load increased.  相似文献   

8.
A nanoparticle dispersion is known to enhance the mechanical properties of a variety of polymers and resins. In this work, the effects of silica (SiO2) nanoparticle loading (0–2 wt%) and ammonia/ethylene plasma-treated fibers on the interfacial and mechanical properties of carbon fiber–epoxy composites were characterized. Single fiber composite (SFC) tests were performed to determine the fiber/resin interfacial shear strength (IFSS). Tensile tests on pure epoxy resin specimens were also performed to quantify mechanical property changes with silica content. The results indicated that up to 2% SiO2 nanoparticle loading had only a little effect on the mechanical properties. For untreated fibers, the IFSS was comparable for all epoxy resins. With ethylene/ammonia plasma treated fibers, specimens exhibited a substantial increase in IFSS by 2 to 3 times, independent of SiO2 loading. The highest IFSS value obtained was 146 MPa for plasma-treated fibers. Interaction between the fiber sizing and plasma treatment may be a critical factor in this IFSS increase. The results suggest that the fiber/epoxy interface is not affected by the incorporation of up to 2% SiO2 nanoparticles. Furthermore, the fiber surface modification through plasma treatment is an effective method to improve and control adhesion between fiber and resin.  相似文献   

9.
We consider the effects of using urethane rubber/epoxide resin blends as matrices for unidirectional glass and carbon fiber and for balanced-weave glass fiber cloth composites. The mechanical properties of the unreinforced resin and various composites were measured for specimens with matrices containing up to 35 percent of urethane. The properties of the unreinforced resin show very marked changes between 30 and 35 percent of urethane due, it is believed, to the existence of discrete regions of urethane polymer throughout the matrix. The transverse properties of the unidirectional carbon fiber composites are significantly enhanced by the presence of 20 percent of urethane in the matrix without, apart from a decrease in the shear modulus, any marked change in other properties. This could prove useful in the applications of carbon fiber composites. Results for glass fiber materials are less dramatic, possibly because of poorer adhesion between the glass fiber and the urethane. If this is indeed the cause of the results, it should be possible to bring about an improvement for glass fiber composites by using fibers coated with a suitable coupling agent.  相似文献   

10.
The curing behaviour, chemorheology, morphology and dynamic mechanical properties of epoxy ? polyphenylene oxide (PPO) blends were investigated over a wide range of compositions. Two bisphenol A based di‐epoxides ? pure and oligomeric DGEBA ? were used and their cure with primary, tertiary and quaternary amines was studied. 4,4′‐methylenebis(3‐chloro‐2,6‐diethylaniline) (MCDEA) showed high levels of cure and gave the highest exotherm peak temperature, and so was chosen for blending studies. Similarly pure DGEBA was selected for blending due to its slower reaction rate because of the absence of accelerating hydroxyl groups. For the PPO:DGEBA340/MCDEA system, the reaction rate was reduced with increasing PPO content due to a dilution effect but the heat of reaction were not significantly affected. The rheological behaviour during cure indicated that phase separation occurred prior to gelation, followed by vitrification. The times for phase separation, gelation and vitrification increased with higher PPO levels due to a reduction in the rate of polymerization. Dynamic mechanical thermal analysis of PPO:DGEBA340/MCDEA clearly showed two glass transitions due to the presence of phase separated regions where the lower Tg corresponded to an epoxy‐rich phase and the higher Tg represented the PPO‐rich phase. SEM observations of the cured PPO:DGEBA340/MCDEA blends revealed PPO particles in an epoxy matrix for blends with 10 wt% PPO, co‐continuous morphology for the blend with 30 wt% PPO and epoxy‐rich particles dispersed in a PPO‐rich matrix for 40wt% and more PPO. © 2014 Society of Chemical Industry  相似文献   

11.
Abstract

The morphology and mechanical properties of poly(ethylene terephthalate) (PET)–epoxy blends and the application of these blends in continuous glass fibre reinforced composites have been investigated. Epoxy resin was applied as a reactive solvent for PET to obtain homogeneous solutions with a substantially decreased melt viscosity. The epoxy resin in these solutions was cured using an amine hardener according to two different schedules. In the first, high temperature curing at 260°C preceded low temperature crystallisation of the PET at 180°C. In the second, the PET was allowed to crystallise prior to low temperature curing at 180°C. After cure, all blends revealed a phase separated morphology of dispersed epoxy in a continuous PET matrix. The flexural strength and failure strain of all cured blends showed an increase with increasing epoxy content, whereas the high temperature cured blends exhibited overall lower flexural properties than those cured at the lower temperature. Microstructural analysis and flexural properties of continuous glass fibre reinforced PET–epoxy laminates showed that the composites obtained had a low void content. These PET–epoxy laminates had increased inplane shear strength in comparison with unmodified PET based laminates, indicating considerably increased fibre–matrix adhesion.  相似文献   

12.
The rheology of epoxy resin-polysulfone blends and wetting at the blend/glass fibre interface have been studied. Measurements were made in a rotary viscometer and in a modified Wilhelmy apparatus. It was shown that none of the blends investigated revealed non-Newtonian behaviour in the range of shear rates used. The viscosity of the blends increased as polysulfone content increased. Introduction of hardener resulted in a significant increase of the blends viscosity up to 2-3 orders of magnitude. Rheological tests suggested that 15 wt% polysulfone was the highest concentration useful for obtaining composites by solvent-free impregnation technique. These tests suggested that the structure of the cured epoxy-polysulfone blends depended on the modifier concentration. The structures of the blends differed for the blends containing 5 wt% polysulfone and 10-15 wt% polysulfone. All the blends (with the hardener) required at least 30 min at 180°C to achieve final values of the mechanical properties such as storage and loss moduli, loss tangent and complex viscosity. For all epoxy resin-polysulfone/glass fibre systems a complete wetting of the fibres was observed. Surface tension vs. polysulfone content dependency was found to be nonadditive. Surface tension measured was minimal for epoxy resin-5% polysulfone blend, while for other systems the values were close to that of epoxy resin. Modification of epoxy resin by polysulfone did not change the kinetics of the fibres wetting by the blends.  相似文献   

13.
The effectiveness of polyethyleneimine (PEi) dendrimer as a novel graded-modulus interphase material in polymeric composites is discussed in the context of core (polystyrene)–shell (PEi) nanoparticles affecting the mechanical properties of epoxy. The dendrimer is grafted onto the surface of polystyrene (PS) particles via a free radical polymerization reaction of styrene monomers in a non-aqueous polar solvent with t-butyl hydroperoxide (TBHP) as initiator and mild heating. The effects of both particle loading and core/shell composition are investigated. The mechanical test results in all cases show an increase in both stiffness and fracture toughness or the ability of the polymer to resist crack growth, as opposed to the commonly seen trade-off between these properties in previously studied soft particles. SEM micrographs suggest that the crosslinks with epoxy in the dendrimer network, leading to a dramatic interface stretching as the core-to-shell ratio decreases, and the capability of the dendrimer to 'harden' PS particles by diverting cracks through them are responsible for the enhancements.  相似文献   

14.
《Ceramics International》2017,43(4):3769-3773
MoO3/reduced graphene oxide (MoO3/RGO) composites were successfully prepared via a facile one-step hydrothermal method, and evaluated as anode materials for sodium ion batteries (SIBs). The crystal structures, morphologies and electrochemical properties of the as-prepared samples were characterized by X-ray diffraction, field-emission scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge tests, respectively. The results show that the introduction of RGO can enhance the electrochemical performances of MoO3/RGO composites. MoO3/RGO composite with 6 wt% RGO delivers the highest reversible capacity of ~208 mA h g−1 at 50 mA g−1 after 50 cycles with good cycling stability and excellent rate performance for SIBs. The excellent sodium storage performance of MoO3/RGO should be attributed to the synergistic effect between MoO3 and RGO, which offers the increased electrical conductivity, the facilitated electron transfer ability and the buffering of volume expansion.  相似文献   

15.
Curved geometry in unidirectional CFRP (UD-CFRP) demands ideal shape optimization to attain superior performance while maintaining the desired high strength to weight ratio. Herein, the effect of graphene oxide (GO) as the potential filler to improve the mechanical and thermal properties of flat and curved specimens of UD-CFRP was investigated. The GO was synthesized using Hummer's method and introduced in the epoxy resin by wet transfer technique. Three-point and four-point bending analysis of UD-CFRP showed maximum flexural strength and modulus at 0.3 wt% GO addition in UD-CFRP. The improved interfacial adhesion of 0.3 wt% GO incorporated UD-CFRP was realized by calculating storage modulus, reinforcement efficiency factor (r), C-factor, adhesion factor, cross-linking density, and glass transition temperature (Tg) from dynamic mechanical analyzer. Fracture analysis by scanning electron microscope showed the superior interlocking in carbon fiber, and epoxy polymer at 0.3 wt% GO addition.  相似文献   

16.
Epoxidized soybean oil was incorporated as a co‐matrix into an epoxy resin, and the hybrid resin system was used for preparing glass fiber‐reinforced composites. Effect of addition of poly(vinyl chloride) plastisol and selected particulate fillers (fly ash and wood flour) to epoxy/epoxidized soybean oil matrix on mechanical and water uptake properties of glass fiber‐reinforced composites were studied. Fourier transform infrared spectroscopy was used to reveal the curing state of these composites. It was observed that tensile strengths and moduli decreased with the inclusion of all additives. However, addition of poly(vinyl chloride) plastisol, fly ash, and wood flour particulate fillers showed significant increase in impact strengths compared with neat epoxy composite in a synergistic manner. Water uptake results of the composites were found to be in good agreement with ? OH peak intensities obtained from Fourier transform infrared spectroscopy. Finally, acousto‐ultrasonic nondestructive technique was successfully used to assess damage states and to relate stress wave factors with tensile strength properties of modified epoxy‐based glass fiber composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40586.  相似文献   

17.
In this study, glass fiber/epoxy composites were interfacially tailored by introducing polyamidoamine (PAM) dendrimer functionalized graphene oxide (GO) into epoxy matrix. Two different composites each containing varying loading fraction (0.5, 1.0, and 1.5 wt%) of GO and GO-PAM were fabricated via hot press processing. Composites were evaluated for interlaminar shear strength (ILSS), dynamic mechanical properties and thermal conductivity. The inclusion of 1.5 wt% GO-PAM resulted ~57.3%, ~42.7%, and ~54% enhancement in ILSS, storage modulus and thermal conductivity, respectively. Almost, ~71% reduction in coefficient of thermal expansion was also observed at same GO-PAM loading. Moreover, higher glass transition temperature was observed with GO-PAM addition. GO-PAM substantially improved fiber/matrix interfacial adhesion, which was witnessed through scanning electron microscopy. The enhanced thermo-mechanical performance was attributed to interfacial covalent interactions engendered by ring opening reaction between epoxy and amine moieties of PAM dendrimers. These multiscale composites with extraordinary functional properties can outperform conventional counterparts with improved reliability and performance.  相似文献   

18.
The erosion behavior of N720/Alumina oxide/oxide composite was investigated under a combustion environment to better represent particle ingestion of a jet engine. The effect of particle velocity, particle size, temperature and impingement angle were investigated. In addition, room temperature studies were also conducted for comparison. Eroded sites were investigated using optical and scanning electron microscopy to understand the extent of erosion and erosion mechanisms. The results indicate that erosion rate increased with an increase in particle velocity and particle size. Also, erosion rate increased from room temperature to 815 °C and then decreased from 815 °C to 1200 °C. Brittle fracture is the predominant mode under normal impacts and as the impact angle is decreased increased ploughing/wear is evident.  相似文献   

19.
We synthesized an epoxy matrix composite adhesive containing aluminum nitride (AlN) powder, which was used for thermal interface materials (TIM) in high power devices. The experimental results revealed that adding AlN fillers into epoxy resin was an effective way to boost thermal conductivity and maintain electrical insulation. We also discovered a proper coupling agent that reduced the viscosity of the epoxy‐AlN composite by AlN surface treatment and increased the solid loading to 60 vol %. For the TIM sample made with the composite adhesive, we obtained a thermal conductivity of 2.70 W/(m K), which was approximately 13 times larger than that of pure epoxy. The dielectric strength of the TIM was 10 to 11 kV/mm, which was large enough for applications in high power devices. Additionally, the thermal and insulating properties of the TIM did not degrade after thermal shock testing, indicating its reliability for use in power devices. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
In the current work, silica-decorated graphene oxide (SiO2@GONPs) nanohybrids were used to reinforce the jute fiber/epoxy (JF/EP) composite. Tetraethylorthosilicate (TEOS) was utilized to prepare the SiO2@GONPs using a facial route. The results of Fourier-transform infrared spectroscopy (FTIR), atomic force microscopy, and elemental X-ray mapping confirmed the successful synthesis of SiO2@GONPs nanohybrids. Herein, the effects of SiO2@GONPs loading (0, 0.1, 0.3, and 0.5 wt%) on the mechanical behavior of the JF/EP composite were investigated with emphasis on the flexural and high-velocity impact properties. The results revealed that reinforcement of matrix with 0.3 wt% SiO2@GONPs enhanced the flexural strength of the JF/EP composite by about 40%. The energy absorption capability and impact limit velocity of the 0.3 wt% SiO2@GONPs-filled JF/EP composite were 61 and 28%, respectively, higher than those of the neat specimen. Compared to the untreated-GONPs, the SiO2@GONPs nanohybrid demonstrated an evident superiority in improving the mechanical properties of the JF/EP composite at the same loading. Evaluation of the fracture surfaces of the multiscale composites revealed that the improved fiber-matrix interfacial bonding was the basic mechanism of fracture in these specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号