首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Solving mobile manipulation tasks in inaccessible and dangerous environments is an important application of robots to support humans. Example domains are construction and maintenance of manned and unmanned stations on the moon and other planets. Suitable platforms require flexible and robust hardware, a locomotion approach that allows for navigating a wide variety of terrains, dexterous manipulation capabilities, and respective user interfaces. We present the CENTAURO system which has been designed for these requirements and consists of the Centauro robot and a set of advanced operator interfaces with complementary strength enabling the system to solve a wide range of realistic mobile manipulation tasks. The robot possesses a centaur‐like body plan and is driven by torque‐controlled compliant actuators. Four articulated legs ending in steerable wheels allow for omnidirectional driving as well as for making steps. An anthropomorphic upper body with two arms ending in five‐finger hands enables human‐like manipulation. The robot perceives its environment through a suite of multimodal sensors. The resulting platform complexity goes beyond the complexity of most known systems which puts the focus on a suitable operator interface. An operator can control the robot through a telepresence suit, which allows for flexibly solving a large variety of mobile manipulation tasks. Locomotion and manipulation functionalities on different levels of autonomy support the operation. The proposed user interfaces enable solving a wide variety of tasks without previous task‐specific training. The integrated system is evaluated in numerous teleoperated experiments that are described along with lessons learned.  相似文献   

2.
The paper discusses the redesign of the second version of the Mantis hybrid leg-wheel mobile robot, conceived for surveillance and inspection tasks in unstructured indoor and outdoor environments. This small-scale ground mobile robot is characterized by a main body equipped with two front actuated wheels, a passive rear axle and two rotating legs. Motion on flat and even ground is purely wheeled in order to obtain high speed, high energetic efficiency and stable camera vision; only in case of obstacles or ground irregularities the front legs realize a mixed leg-wheel locomotion to increase the robot climbing ability; in particular, the outer profile of the legs, inspired by the praying mantis, is specially designed to climb square steps. The multibody simulations and the experimental tests on the first prototype have shown the effectiveness of the mixed leg-wheel locomotion not only for step climbing, but also on uneven and yielding terrains. Nevertheless, extensive experimental tests have shown that the front wheels may slip in the last phase of step climbing in case of contact with some materials. In order to overcome this problem, the leg design has been modified with the introduction of auxiliary passive wheels, which reduce friction between legs and step upper surface; these wheels are connected to the legs by one-way bearings, in order to rotate only when they are pulled by the front wheels, and remaining locked when they have to push forward the robot. The influence of the auxiliary wheels on the front wheels slippage is investigated by means of theoretical analysis and multibody simulations.  相似文献   

3.
This paper proposes a new wheel-track-leg hybrid robot. The hybrid robot comprises a robot body, four driving mechanisms, four independent track devices, two supporting legs and one wheel lifting mechanism, which can fully benefit different advantages from wheeled, tracked and legged robots to adapt itself to varied landforms (the rough terrain and high obstacle). Based on the symmetrical mechanical structure, locomotion modes of the mobile robot are analyzed. With the coordinate transformation matrix, the center of mass of the robot is described. Moreover, the stability pyramid method is used to analyze on the climbing motion, especially in the hybrid locomotion mode. Through theoretical analysis, simulation and experimental verification, it’s proven that the robot can remain stable in the process of climbing motion.  相似文献   

4.
Based on the well-known advantages of using an over-actuated mechanism for robots, this research proposes a holonomic highly-maneuverable autonomous robot design for demining service applications. The proposed approach provides an interesting compromise between the design requirements of the demining robot applications and the over-actuated autonomous robots. The robot body is mainly divided into two parts: the first part provides the robot with its required locomotion and it consists of a driving/steering subsystem with four driving wheels (4WD), four steering mechanisms (4SW), and a passive suspension subsystem. The second part is a manipulator with three degrees of freedom that is designed based on two parallelogram mechanisms. The proposed design insures many advantages over existing designs, including stability, maneuverability, autonomous navigation, and simplicity of the control effort constraints. The robot model and its corresponding stability analysis were conducted and simulated in order to evaluate the motion of the robot over different environments rough terrains and slanted surfaces. Moreover, a prototype of the proposed robot was developed and built and different types of sensors were used in order to help it take precise actuation decisions for navigation and control. The prototype was experimentally tested for different scenarios and environments in order to validate the proposed design. The testing results demonstrated decent performance of the robot in autonomous navigation and in localizing the detected objects.  相似文献   

5.
Robot walking, while appealing for its resemblance to human motion, is not an obvious choice when both economy and versatility are desired. Wheeled vehicles are surprisingly capable on different terrains and are nearly unbeatable in terms of economy. In specialized situations, legged locomotion may become preferable. But legged locomotion entails inertial and other energetic costs that do not appear in wheeled machines. The force and work requirements of legged locomotion also only appear energetically economical when considering the unique features of the human body and human muscle. The attainment of high economy in a legged robot requires either actuators similar to humans' or discontinuous nonlinear mechanisms that can reduce energetic losses to support a load. The attainment of high versatility indicates that the ZMP is likely to remain applicable, unless serious advances are made in other control theoretical approaches.  相似文献   

6.
《Advanced Robotics》2013,27(1-2):63-82
This paper presents the mechanical design, locomotion and associated dynamic models of a new robotic wheelchair on climbing winding stairs. The prototype stair-climbing robotic wheelchair is constructed comprising a pair of rotational multi-limbed structures pivotally mounted on opposite sides of a support base so that the robotic wheelchair can ascend and descend stairs; in particular, the capability of climbing winding stairs is addressed. Based on the skid-steering analysis, the dynamic models for climbing winding stairs are developed for the trajectory planning and motion analyses. These models are required to ensure a passenger's safety in such a way that the robotic wheelchair is operated in an open mode. Moreover, an equivalent constraint method is proposed for the prescribed motion of the robotic wheelchair on climbing winding stairs. The results of the simulation and maneuver are reported that show the behavior of the prototype as it climbs winding stairs in a dynamic turning.  相似文献   

7.
This paper describes a novel stair-climbing wheelchair operated by human upper body using lever propelled rotary-legs with posture transition mechanism. The design principle of this wheelchair is to make use of the user's latent upper body capability, with appropriate mechanisms to enable extended functionality of the regular wheelchair without the need of heavy, expensive mechanisms or electric motors. An arm-operated mechanism allows the user to overcome steps and stairs independently without any external power source. The developed wheelchair consists of manual wheels with casters for planar locomotion, which provides capabilities equivalent to a regular manual wheelchair. In addition, the wheelchair has a rotary-legs mechanism based on lever propulsion control for climbing stairs. It also has a passive mechanism powered by gas springs for posture transition to shift the user's center of gravity between two positions for planar locomotion and for stair-climbing. The proposed design consists of only passive components, which makes the wheelchair more compact and lightweight. In this paper we describe in detail the development of this wheelchair and an investigation of how users can climb stairs independently. We also present evaluation experiments with a healthy participant and a dummy to investigate the feasibility of the proposed design.  相似文献   

8.
Adaptability to the environment is crucial for mobile robots, because the circumstances, including the body of the robot, may change. A robot with a large number of degrees of freedom possesses the potential to adapt to such circumstances, but it is difficult to design a good controller for such a robot. We previously proposed a reinforcement learning (RL) method called the CPG actor-critic method, and applied it to the automatic acquisition of vermicular locomotion of a looper-like robot through computer simulations. In this study, we developed a looper-like robot and applied our RL method to the control of this robot. Experimental results demonstrate fast acquisition of a vermicular forward motion, supporting the real applicability of our method. This work was presented in part at the 12th International Symposium on Artificial Life and Robotics, Oita, Japan, January 25–27, 2007  相似文献   

9.
可跳跃式移动机器人机构设计及实现   总被引:4,自引:0,他引:4  
李保江  胡玉生 《机器人》2007,29(1):51-55
构建了一个具有跳跃能力的移动式机器人.机器人在较平坦地形下采用轮式移动方式前行;遇到障碍物或沟渠时,可以进行跳跃,从而扩大运动范围.介绍了机器人机械系统的总体结构,给出了机器人的本体结构及起跳姿态,并分析了机器人的运动过程.然后,详细分析了机器人的跳跃机构、跳跃参数调节机构、倾覆翻转机构等关键机构的工作原理,给出了机构设计方案.最后,根据总体设计要求选定了机器人的一些关键参数.  相似文献   

10.
《Advanced Robotics》2013,27(7):607-623
The problem approached in this paper is the simulation of maneuvers planning for an autonomous mobile robot moving in constrained spaces free of obstacles. The robot treated is an autonomous wheelchair for the disabled. Our approach is based on the principle that a maneuver is the concatenation of elementary moves with reversal. So, to perform a maneuver that enables reaching a final state, we have defined five elementary moves. The developed planner is built around a perception system, a guidance system and a locomotion system. Each elementary move is implemented using a fuzzy controller.  相似文献   

11.
This paper presents the experimental validation and field testing of a novel hybrid mobile robot (HMR) system using a complete physical prototype. The mobile robot system consists of a hybrid mechanism whereby the locomotion platform and manipulator arm are designed as one entity to support both locomotion and manipulation symbiotically and interchangeably. The mechanical design is briefly described along with the related control hardware architecture based on an embedded onboard wireless communication network between the robot's subsystems, including distributed onboard power using Li‐ion batteries. The paper focuses on demonstrating through extensive experimental results the qualitative and quantitative field performance improvements of the mechanical design and how it significantly enhances mobile robot functionality in terms of the new operative locomotion and manipulation capabilities that it provides. In terms of traversing challenging obstacles, the robot was able to surmount cylindrical obstacles up to 0.6‐m diameter; cross ditches with at least 0.635‐m width; climb and descend step obstacles up to 0.7‐m height; and climb and descend stairs of different materials (wood, metal, concrete, plastic plaster, etc.), different stair riser and run sizes, and inclinations up to 60 deg. The robot also demonstrated the ability to manipulate objects up to 61 kg before and after flipping over, including pushing capacity of up to 61 kg when lifting objects from underneath. The above‐mentioned functions are critical in various challenging applications, such as search and rescue missions, military and police operations, and hazardous site inspections. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
In this paper we present a novel design for a dual‐tracked mobile robot. The robot is designed for safe, stable, and reliable motion in challenging terrains, tunnels, and confined spaces. It consists of two tracked platforms connected with a semipassive mechanism. Sensors attached to the connecting mechanism provide redundant localization data that improve the vehicle's autonomous dead reckoning. Each tracked platform mechanically backs up the other platform, resulting in a more robust and reliable operation. The load share between the platforms enables a high payload‐to‐weight ratio even on soft and slippery terrains. The robot's configurations make it suitable for motion in confined spaces such as underground tunnels, collapsed structures, pipes, and caves. The paper presents the mechanical design of the robot, its kinematic model, stability analysis, and a motion planner. Experimental results conducted on prototype models in various types of environments verify the robot capabilities to operate successfully on challenging terrains. The dual‐tracked robot is capable of climbing slopes 50% steeper than a single robot can. Moreover, the improved odometry system shows high accuracy with 2% error of the total travel distance. © 2011 Wiley Periodicals, Inc.  相似文献   

13.
基于循环抑制CPG 模型控制的蛇形机器人三维运动   总被引:3,自引:1,他引:3  
具有三维运动能力和独特的节律运动方式,使生物蛇能在复杂的地形环境中生存. 大多数动物节律运动是由中央模式发生器(Central pattern generator, CPG) 控制的. 以此为理论依据, 首次以循环抑制建模机理构建蛇形机器人组合关节运动控制的CPG 模型. 证明该模型是节律输出型CPG 中微分方程维数最少的. 采用单向激励方式连接该类CPG 构建蛇形机器人三维运动神经网络控制体系,给出该CPG 网络产生振荡输出的必要条件. 应用蛇形机器人动力学模型仿真得到控制三维运动的CPG 神经网络参数,利用该CPG 网络的输出使\勘查者"成功实现三维运动. 该结果为建立未探明的生物蛇神经网络模型提供了一种全新的方法.  相似文献   

14.
为了解决移动机器人在户外自主导航移动过程中的局部路径规划问题,提出了一种更为实用的模糊神经网络算法来进行局部路径规划。利用多个声纳和一个摄像头来采集外部环境信息,使智能轮椅在移动过程中可以得到较全面的外部环境信息,使用模糊神经网络算法来对得到的环境信息进行融合,应用的神经网络模型为Takagi-Sugeno(T-S)型,通过融合的结果来控制轮椅的沿墙走行为。通过计算机仿真和实验,验证了该方法的可行性和有效性,轮椅沿墙行走的路径得到了优化。  相似文献   

15.
自然地形环境下移动机器人的一种路径规划方法   总被引:3,自引:0,他引:3  
王宏  王学福  张钹  孙家广 《软件学报》1995,6(3):173-178
本文给出了一种规划移动机器人在自然地形中运动的新方法,该方法利用NURBS曲面模拟自然地形地貌,以TrimmedNURBS曲面描述带有障碍物或不可逾越区域的地形,在综合考虑机器人动力学、地形及障碍描述和曲面特性等各方面因素的情形下,运用测地线的概念和计算方法以及A*搜索算法,获得了在自然地形环境下任意两点间的距离最短路径和时间最优路径,所有的路径均由NURBS曲线表示,实验结果表明,该方法在性能与效率上均十分令人满意.  相似文献   

16.
In human living environments, it is often the case that the cleaning area is three-dimensional space such as a high-rise building. An autonomous cleaning robot is proposed so as to move on all floors including stairs in a building. When a robot cleans in three-dimensional space, it needs to turn for direction in addition to climb down stairs. The proposed robot selects movement using legs or wheels depending on stairs or flat surfaces. In this paper, a mobile mechanism and a control method are described for translational locomotion. The translational mechanism is based on using two-wheel-drive type omni-directional mobile mechanism. To recognize a stair using the position-sensitive detector, the robot shifts from translational locomotion to climbing down motion or edge-following motion. It is shown that the proposed robot turns to face a stair with the accuracy of 5°.  相似文献   

17.
With slim and legless body, particular ball articulation, and rhythmic locomotion, a nature snake adapted itself to many terrains under the control of a neuron system. Based on analyzing the locomotion mechanism, the main functional features of the motor system in snakes are specified in detail. Furthermore, a bidirectional cyclic inhibitory (BCl) CPG model is applied for the first time to imitate the pattern generation for the locomotion control of the snake-like robot, and its characteristics are discussed, particularly for the generation of three kinds of rhythmic locomotion. Moreover, we introduce the neuron network organized by the BCI-CPGs connected in line with unilateral excitation to switch automatically locomotion pattern of a snake-like robot under different commands from the higher level control neuron and present a necessary condition for the CPG neuron network to sustain a rhythmic output. The validity for the generation of different kinds of rhythmic locomotion modes by the CPG network are verified by the dynamic simulations and experiments. This research provided a new method to model the generation mechanism of the rhythmic pattern of the snake.  相似文献   

18.
一种主动适形越障机器人的设计与特性分析   总被引:2,自引:0,他引:2  
针对非道路环境的特点,提出一种适用于非道路条件下的新型主动适形越障机器人的设计过程.这种越障机器人采用了将轮履带式移动机构与主动式机械臂相结合的创新设计,保留了轮履带式移动机构能够适应多种地面条件的优点,进一步增强了机器人穿越壕沟、台阶、高台、单侧障碍等典型地形的能力,具有良好的环境适应能力.为检验设计方案的有效性,应用虚拟样机技术对该机器人在几种典型地形条件下的运动特性进行了分析,取得了令人满意的效果.  相似文献   

19.
A new terrain‐inclination‐based localization technique is proposed in this paper to enable a robot to identify its three‐dimensional location relative to measurable terrain inclinations. Given a topographical map and a planned path, a robot‐terrain‐inclination model (RTI model) is extracted along the path on the terrain upon which the robot is operating. A particle filter is then used to fuse the measurement data with the robot motion based on the extracted RTI model for either a three‐wheeled or a four‐wheeled mobile robot. Experiments were carried out in four outdoor scenarios: one short path with different initial conditions and map resolution, another short path with different surface roughness and sensor accuracy, and two long paths with different types of rigid terrains and multiple loops. Experimental results show that the proposed method could achieve good localization performance on inclined outdoor terrains.  相似文献   

20.
This paper deals with the development of a stair-climbing mobile robot with legs and wheels. The main technical issues in developing this type of robot are the stability and speed of the robot while climbing stairs. The robot has two wheels in the front of the body to support its weight when it moves on flat terrain, and it also has arms between the wheels to hook onto the tread of stairs. There are two pairs of legs in the rear of the body. Using not only the rorational torque of the arms and the wheels, but also the force of the legs, the robot goes up and down stairs. It measures the size of stairs when going up and down the first step, and therefore the measurement process does not cause this robot to lose any time. The computer which controls the motion of the robot needs no complicated calculations as other legged robots do. The mechanism of this robot and the control algorithm are described in this paper. This robot will be developed as a wheelchair with a stair climbing mechanism for disabled and elderly people in the near future. This work was presented, in part, at the International Symposium on Artificial Life and Robotics, Oita, Japan, February 18–20, 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号