首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The load transmission capability of adhesive joints can be improved by increasing the surface free energy of the adherends with surface treatments. In this paper, suitable plasma surface treatment conditions for carbon/epoxy composite adherend were investigated to enhance the strength of carbon/epoxy composite adhesive joints using a capacitively coupled radio-frequency plasma system. Effects of plasma surface treatment parameters on the surface free energy and adhesion strength of carbon/epoxy composite were experimentally investigated with respect to gas flow rate, chamber pressure, power intensity, and surface treatment time. Quantitative chemical bonding analysis determined with XPS (X-ray photoelectron spectroscopy) was also performed to understand the load transmission capabilities of composite adhesive joints with respect to surface treatment time.  相似文献   

2.
Although an adhesive joint can distribute the load over a larger area than a mechanical joint, requires no holes, adds very little weight to the structure and has superior fatigue resistance, but it not only requires a careful surface preparation of the adherends but also is affected by service environments. In this paper, suitable conditions for surface treatments such as plasma surface treatment, mechanical abrasion, and sandblast treatment were investigated to enhance the mechanical load capabilities of carbon/epoxy composite adhesive joints. A capacitively coupled radiofrequency plasma system was used for the plasma surface treatment of carbon/epoxy composites and suitable surface treatment conditions were experimentally investigated with respect to gas flow rate, chamber pressure, power intensity, and surface treatment time by measuring the surface free energies of treated specimens. The optimal mechanical abrasion conditions with sandpapers were investigated with respect to the mesh number of sandpaper, and optimal sandblast conditions were investigated with respect to sandblast pressure and particle size by observing geometric shape changes of adherends during sandblast process. Also the failure modes of composite adhesive joints were investigated with respect to surface treatment. From the peel tests on plasma treated composite adhesive joints, it was found that all composite adhesive joints failed cohesively in the adhesive layer when the surface free energy was higher than about 40 mJ/m2, because of high adhesion strength between the plasma treated surface and the adhesive. From the peel tests on mechanically abraded composite adhesive joints, it was also found that the optimal surface roughness and adhesive thickness increased as the failure load increased.  相似文献   

3.
Although an adhesive joint can distribute load over a larger area than a mechanical joint, requires no holes, adds very little weight to structures and has superior fatigue resistance, it requires careful surface preparation of adherends for reliable joining and low susceptibility to service environments. The load transmission capability of adhesive joints can be improved by increasing the surface free energy of the adherends with suitable surface treatments. In this study, two types of surface treatment, namely the low pressure and the atmospheric pressure plasma treatment, were performed to enhance the mechanical load transmission capabilities of carbon/epoxy composite adhesive joints. The suitable surface treatment conditions for carbon/epoxy composite adhesive joints for both low and atmospheric pressure plasma systems were experimentally investigated with respect to chamber pressure, power intensity and surface treatment time by measuring the surface free energies of the specimens. The change in surface topography of carbon/epoxy composites was measured with AFM (Atomic Force Microscopy) and quantitative surface atomic concentrations were determined with XPS (X-ray Photoelectron Spectroscopy) to investigate the failure modes of composite adhesive joints with respect to surface treatment time. From the XPS investigation of carbon/epoxy composites, it was found that the ratio of oxygen concentration to carbon concentration for both low and atmospheric pressure plasma-treated carbon/epoxy composite surfaces was maximum after about 30 s treatment time, which corresponded with the maximum load transmission capability of the composite adhesive joint.  相似文献   

4.
The surface of glass/epoxy composite material was embedded with carbon black which was dispersed in methyl ethyl ketone (MEK) during the curing process to enhance the adhesion strength of the glass/epoxy composite structure. The morphological effect of the carbon black on the surface of composite was observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Quantitative chemical bonding analysis with X-ray photoelectron spectroscopy (XPS) was also performed to observe chemical bonding states on the surface. The lap shear strength of the glass/epoxy composite adhesive joints where composite adherends were embedded with carbon black was investigated with respect to the type and amount of embedment. Also, the tensile properties of the carbon black embedded glass/epoxy composites were measured to observe the mechanical degradation of the composite due to the MEK. The surface free energies of carbon black embedded composites were determined from the van Oss–Chaudhury–Good equation to correlate the lap shear strength of the adhesive joints with the surface free energies of composite adherends. From the experimental results, it was found that the carbon black embedment of the composite adherend improved much the bond strength due to the increased surface roughness on nano-scale as well as increased surface free energy.  相似文献   

5.
Aluminum adherends for the adhesive joints at cryogenic application such as LNG (Liquefied Natural Gas) containment tanks were silane treated to improve bond strength of the aluminum joints. The bond strengths of the single-lap joints composed of aluminum adherends and epoxy adhesive were measured with respect to the condition of the silane solution and surface roughness obtained with grit blast. The chemical composition of the silane treated aluminum surface was analyzed by XPS (X-ray photoelectron spectroscopy). Also, contact angles of appropriate liquids on the silane treated aluminum surface were measured with respect to treatment conditions. From the experiments, the optimum treatment conditions for the aluminum adherends were obtained for the adhesive joints at the cryogenic temperature.  相似文献   

6.
—As the applications of composite structures have increased, various techniques to join composite parts to the structures have been developed in order to meet the required adhesion strength. In this work, surface modification of carbon/epoxy composites was investigated using ultraviolet (UV) surface treatment to increase the adhesion strength between the carbon/epoxy composite and the epoxy adhesive. After UV surface treatment, X-ray photoelectron spectroscopy (XPS) analysis and contact angle measurements were performed to analyze the surface characteristics of the carbon/epoxy composites. From the results of XPS analyses and adhesion strength tests, it was found that the increase of C O bond density on the surface of carbon/epoxy composite caused the enhancement of adhesion strength. Also it was found that the UV-B (wavelength 280–315 nm) surface treatment resulted in a superior adhesion strength compared to the UV-A (wavelength 315–400 nm) surface treatment.  相似文献   

7.
Since the surface roughness of adherends greatly affects the strength of adhesively bonded joints, the effect of surface roughness on the fatigue life of adhesively bonded tubular single lap joints was investigated analytically and experimentally by a fatigue torsion test. The stiffness of the interfacial layer between the adherends and the adhesive was modelled as a normal statistical distribution function of the surface roughness of the adherends. From the investigation, it was found that the optimum surface roughness of the adherends for the fatigue strength of tubular single lap joints was dependent on the bond thickness and applied load.  相似文献   

8.
胶接连接应用日渐广泛,特别是在汽车和航空航天等结构领域。首先分析了复合材料/金属胶接连接方式的特点,重点介绍了接头中的次弯曲效应、异质材料间刚度与热膨胀系数的不匹配特性以及载荷传递特性。然后总结了提高胶接接头强度的研究进展,主要包括增大胶接长度和宽度、选择胶黏剂、表面处理、增加胶瘤和被粘合物形状的设计等方面。最后对胶接接头的发展趋势进行了展望。  相似文献   

9.
Adhesive joints have been widely used for fastening thin adherends because they can distribute the load over a larger area than the mechanical joint, require no holes, add very little weight to the structure and have superior fatigue resistance. However, the load capabilities of adhesive joints are affected by both applied pressure and temperature during cure, as well as by service environments because the adhesion characteristics of adhesives are very sensitive to manufacturing and environmental conditions. In this study, the tensile load capabilities of tubular single-lap adhesive joints with an epoxy adhesive were experimentally investigated with respect to service temperature and the applied pressure and temperature during curing operation. The effects of the applied pressure on the tensile load capabilities of tubular single-lap adhesive joints were studied by measuring the actual cure finish temperature using thermocouples and dielectrometry. From the experiments, it was found that the actual cure finish temperature of tubular single-lap adhesive joints increased as applied pressure increased, which increased residual thermal stress in the adhesive layer to decrease the load capabilities of adhesive joints. From finite element analysis and experimental results of tubular singlelap adhesive joints, the optimal geometry condition for adhesive joints was also investigated.  相似文献   

10.
Adhesion performance of adhesively bonded metal joints with aluminum and stainless steel was much dependent on the surface treatment of the adherends. This work was aimed at optimizing hybrid surface treatments to improve wettability of metal surfaces and strength of adhesive metal joints, which was a combination of mechanical, chemical, and energetic surface treatment methods. The surface free energies and wettability of hybrid surface-treated metal adherends were measured for different treatment conditions with abrasion, grit blast, sulfuric acid etching, phosphoric acid anodizing, silane treatment, plasma treatment, and flame treatment. The surface morphology and chemical composition of the metal adherends were investigated by scanning electron microscopy and X-ray photoelectron spectroscopy and the bond strengths of the single-lap joints composed of aluminum and stainless steel adherends were measured with respect to hybrid surface treatment conditions. From the experiments, an effective hybrid surface treatment condition was suggested for metal surfaces with super-hydrophilic characteristics. Also, the failure mode of adhesive metal joints was evaluated by photo-surface analysis method.  相似文献   

11.
Paraffin wax and other moieties in sulfur vulcanized styrene-butadiene rubber formulations may migrate to the surface, reducing the adhesive strength in joints produced with polyurethane adhesive. In this study, with the aim to remove paraffin wax and other anti-adhesion moieties on the rubber surface to improve adhesion, prior to plasma torch treatment, a methyl ethyl ketone (MEK) cleaning in an ultrasonic bath has been carried out. The surface modifications produced on the rubber surface have been analyzed by contact angle measurements, ATR-IR spectroscopy, XPS and SEM. The adhesion properties have been evaluated by T-peel strength of treated rubber/polyurethane adhesive joints. Ultrasonic cleaning in MEK resulted in partial removal of paraffin wax on the rubber surface and, thus, lower contact angle values, decreased relative intensity of the infrared bands due to hydrocarbon moieties and lower percentage of carbon assessed from XPS spectroscopy were obtained. The ultrasonic cleaning in MEK of the rubber increased the effectiveness of the atmospheric pressure plasma torch treatment, and surface oxidation was produced. However, the oxidation degree decreased with time after plasma torch treatment, likely due to ageing of the surface treated rubber.  相似文献   

12.
An excimer UV laser (193 nm) was used for preadhesion surface treatment of PEEK (polyetheretherketone) composite. This method presented an alternative to other limited and polluting conventional surface treatment methods. Experimental results indicated that laser preadhesion treatment significantly improved the shear and tensile adhesion strength of structural epoxy FM 300 2K bonded PEEK composite adherends compared with untreated and SiC blasted substrates. Best results were obtained with laser energies of 0.18 or 1 J/P cm.2 Shear strength of laser-treated joints was improved by 450% compared with that of untreated PEEK composite and by 200% compared with SiC-blasted pretreatment at ambient and at extreme temperatures. An order of magnitude of improvement was found in the tensile strength-of laser-treated PEEK composite in a sandwich structure compared with non-treated or abraded sandwich joints. The mode of failure changed from adhesive to cohesive as the number of pulses or laser energy increased during treatment. The latter phenomenon was correlated with surface cleaning as revealed by XPS, with morphology changes as revealed by scanning electron microscopy, and by chemical modification as indicated by FTIR and XPS. The bulk of the PEEK composite adherend was not damaged by the laser irradiation during treatment as indicated by the identical flexural strength before and after laser treatment. It can be concluded that the excimer laser has a potential as a precise, clean and simple preadhesion surface treatment for PEEK composite.  相似文献   

13.
This paper presents the experimental results of an on-going study to examine cleavage strength, particularly at the interface regions of epoxy adhesive with steel and glass reinforced epoxy (GRE) composite. The adhesion is characterised by mechanical testing of cleavage specimens. A standard specimen was modified to allow testing of hybrid joints. The effects of adhesive thickness and various surface conditions of both adherends were examined. Among key conclusions, the study found that cleavage strength is not strongly dependent upon adhesive thickness and that polished composite gives better adhesion compared with polished steel. Test results were analysed and compared with aspects of numerical analyses. The study has also established a new methodology to test hybrid adhesive cleavage joints.  相似文献   

14.
This paper presents the experimental results of an on-going study to examine cleavage strength, particularly at the interface regions of epoxy adhesive with steel and glass reinforced epoxy (GRE) composite. The adhesion is characterised by mechanical testing of cleavage specimens. A standard specimen was modified to allow testing of hybrid joints. The effects of adhesive thickness and various surface conditions of both adherends were examined. Among key conclusions, the study found that cleavage strength is not strongly dependent upon adhesive thickness and that polished composite gives better adhesion compared with polished steel. Test results were analysed and compared with aspects of numerical analyses. The study has also established a new methodology to test hybrid adhesive cleavage joints.  相似文献   

15.
Although carbon fiber epoxy composite materials have excellent properties for structures, the joint in composite materials often reduces the efficiency of the composite structure because the joint is often the weakest area in the composite structure.

In this paper, the effects of the adhesive thickness and the adherend surface roughness on the static and fatigue strengths of adhesively-bonded tubular polygonal lap joints have been investigated by experimental methods. The dependencies of the static and fatigue strengths on the stacking sequences of the composite adherends were observed.

From the experimental investigations, it was found that the fatigue strength of the circular adhesively-bounded joints was quite dependent on the surface roughness of the adherends and that polygonal adhesively-bonded joints had better fatigue strength characteristics than circular adhesively-bonded joints.  相似文献   

16.
Although carbon fiber epoxy composite materials have excellent properties for structures, the joint in composite materials often reduces the efficiency of the composite structure because the joint is often the weakest area in the composite structure.

In this paper, the effects of the adhesive thickness and the adherend surface roughness on the static and fatigue strengths of adhesively-bonded tubular polygonal lap joints have been investigated by experimental methods. The dependencies of the static and fatigue strengths on the stacking sequences of the composite adherends were observed.

From the experimental investigations, it was found that the fatigue strength of the circular adhesively-bounded joints was quite dependent on the surface roughness of the adherends and that polygonal adhesively-bonded joints had better fatigue strength characteristics than circular adhesively-bonded joints.  相似文献   

17.
Structural adhesive joints between carbon steel and stainless steel were made and evaluated. Various combinations of a two-component epoxy adhesive were used and diverse polymerization cycles were employed to obtain joints of different mechanical strengths. Two ultrasonic procedures were used: ultrasonic scanning with a focused beam to ascertain the quality and the uniformity of the joints; and ultrasonic spectrum analysis to evaluate bond strength. The influence on adhesion of surface calamine of the carbon steel was also investigated: bond strengths were comparable with those attained with ground carbon steel adherends. Adding lubricating oil to the adhesive was found to increase the mechanical properties of the joints.  相似文献   

18.
In this study, the load-carrying capacity of a single-lap joint bonded by an adhesive was determined experimentally. Glass fiber-epoxy composite material was chosen as adherends and Loctite® 9466 A&B2 was used as adhesive. The vacuum assisted resin infusion method (VARIM) was used to manufacture composites. In this experimental study, the effects of hole drilling and temperature were investigated. Five hole configurations and three temperatures (room temperature, 50°C, and 80°C) were considered. The results show that hole drilling elevate the failure load and when the temperature increases the load-carrying capacity decreases.  相似文献   

19.
This investigation highlights the adhesion performance of carbon fiber‐ and glass fiber‐reinforced polyphenylene sulfide when joined by high‐performance neat epoxy adhesive and nanofilled epoxy adhesive. A significant increase in the surface energy of these materials is observed after the surface modification with atmospheric plasma treatment. An increase in surface roughness is observed after exposing the surface to plasma. Lap shear testing of untreated and plasma‐treated joints is carried out to correlate the improvement in adhesion properties with the joint strength. A considerable increase in joint strength is observed when the surfaces of these materials are modified by atmospheric pressure plasma. There is a further increase in joint strength when the composites are joined by nanofilled epoxy adhesive, and subsequent exposure to electron beam radiations results in minor increase in the joint strength. Finally, the fractured surfaces of the joints are examined and the analysis is performed. POLYM. ENG. SCI., 50:1505–1511, 2010. © 2010 Society of Plastics Engineers  相似文献   

20.
The aim of this study is to determine the effect of cataphoretic and powder coatings and also the method of application the primer on the adherends surface on the strength and failure modes of EN AW-5754 aluminium alloy adhesive joints. The study is performed on lap joints made of EN AW-5754 aluminium alloy, subjected to three different types of surface treatment; namely a) polyurethane cataphoretic coating, b) powder coating based on black mat RAL 9005 UL polyester resin and c) no coating. The tested adhesive joints were made using a one-component polyurethane adhesive Terostat 8596, which was dedicated for automotive and cured under a constant load of 0.018 MPa at 20 ± 2 °C. In addition, this study investigates the effect of the application of Terostat 8519P adhesion promoter which is a liquid polyurethane-based primer containing solvents and which is corresponding to Terostat 8596 polyurethane adhesive. Terostat 8519P adhesion promoter was applied in two different ways: a) to one substrate and b) to both substrates. The produced adhesive joints were subjected to strength tests using the Zwick/Roell Z150 testing machine. The examination of fracture in the tested adhesive joints was performed in accordance with the EN ISO 10365 standard. The shear strength results have demonstrated that both the method of application of the adhesion promoter (Terostat 8519 P) and the presence of cataphoretic coating had an influence on adhesive joints strength. The use of the adhesion promoter significantly affects the strength of both uncoated EN AW-5754 aluminium alloy adhesive joints and the adhesive joints subjected to powder coating. The use of the adhesion promoter has a less significant effect on the cataphoretic-coated samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号