共查询到20条相似文献,搜索用时 13 毫秒
1.
《Journal of Adhesion Science and Technology》2013,27(16):1905-1928
Polyimides are commonly used as organic passivation layers for microelectronic devices due to their unique combination of properties such as low dielectric constant, high thermal stability, excellent mechanical properties and superior solvent resistance. Unfortunately, polyimides are well known to be difficult to bond to other materials, especially to epoxy resins. Many surface treatments have been developed to increase epoxy–polyimide adhesion. These treatments include exposure to ion beams, plasmas and chemical solutions. The goal of our research was to relate surface reactivity of epoxy and polyimide resins to the strength of epoxy–polyimide interfaces. The surface reactivity of four polyimides was studied and quantified using contact angle measurements, flow microcalorimetry (FMC), Fourier transform infrared (FT-IR) spectroscopy (using an attenuated total reflection (ATR) accessory) and X-ray photoelectron spectroscopy (XPS). Several ways of analyzing contact angles were tried and only a weak correlation between the polar component or the acid–base components of the surface free energy with the critical interfacial strain energy release rate (i.e., the interfacial fracture strength) was observed. FMC results suggest that the strength of epoxy–polyimide interfaces is related to the molecular interactions between the curing agent and polyimide. The molecular interactions between the curing agent and polyimide surfaces were found to be either greater than epoxy and polyimide interactions or more irreversible. Therefore, the curing agent (2,4-EMI) is thought to play a critical role in controlling adhesion strength. 相似文献
2.
《Journal of Adhesion Science and Technology》2013,27(10):1297-1319
The accuracy of the geometric assumptions in the Johnson- Kendall-Roberts (JKR) theory of adhesion are examined in this work. In particular, the effect of surface curvature on the validity of the JKR theory is analyzed by developing a perturbation solution to the problem of two cylinders in contact. The pressure distribution inside the contact zone as predicted by the JKR theory is shown to be accurate to order 2, where is the ratio of the contact width to the radius of the smaller cylinder. The relative normal approach of the cylinders is also given in a closed form. Based on these results, a correction to the normal approach is derived for the case of three-dimensional contact of hemispheres. The validity of these correction terms and of the JKR theory for hemispheres is investigated numerically using a non-linear finite element method capable of simulating large strains. The effect of thin lenses on the validity of the JKR theory is also examined using the FEM. 相似文献
3.
《Journal of Adhesion Science and Technology》2013,27(7):967-980
A new approach to experimental data treatment in the pull-out and microbond tests has been developed. It uses the relationship between the maximum force recorded in these tests and the embedded length ('scale factor') to separately determine adhesional interfacial parameters (critical energy release rate, local bond strength) and interfacial friction in debonded regions. The new method does not require the measurement of the debond force, which corresponds to interfacial crack initiation, and is, therefore, much more convenient and simpler than 'direct' techniques involving continuous monitoring of crack growth. Using the equation for the current crack length as a function of the load applied to the fiber, based on a fracture mechanics analysis of interfacial debonding, we modeled the pull-out and microbond experiments and obtained the maximum force versus the embedded length. By varying the critical energy release rate and interfacial frictional stress to fit experimental plots, both interfacial parameters were determined for several fiber-polymer pairs. Effects of specimen geometry, residual thermal stresses, and interfacial friction on the measured values are discussed. The results are compared with those obtained with our similar stress-based approach. The energy criterion works when the embedded length is not very short, and in this range of embedded length it is better than the stress criterion. Both criteria can be complementarily used for interface characterization. 相似文献
4.
《Journal of Adhesion Science and Technology》2013,27(9):1223-1233
Bacterial adhesion in relation to urinary-tract infections has gained importance in the last years because of the increasing catheterization in hospitals to assist post-surgery flow of urine. Since the initial adhesion of bacteria to biomaterials is governed by physicochemical forces emerging from the physicochemical properties of both interacting phases, we have investigated the physicochemical surface changes of uropathogen Enterococcus faecalis ATCC29212 bacteria due to the presence of urine in its growth medium and to the differences in the environmental temperature. Urine-grown cells were found to be less hydrophobic based on water contact angles at 22°C, while no changes were detected at 37°C. In addition, they exhibited higher acid-base surface energy component than urine-free cultured cells. These changes in surface properties were also reflected in thermodynamic predictions of the adhesion to glass and silicone, which were experimentally compared with the in vitro adhesion curves obtained in a parallel plate flow chamber. The shapes of the adhesion graphs indicated that interaction free energies should be used to describe only the initial adhesion stages. Adhesion to silicone was always enhanced by urine-grown cells, while the adhesion to glass did not seem to be affected by the urine constituents. Despite the fact that the interaction free energies were not able to explain the adhesion process in some cases, changes in the electron-donor and electron-acceptor parameters of their surface free energy due to urine addition seemed to have a relation with initial adhesion rates. 相似文献
5.
《Journal of Adhesion Science and Technology》2013,27(9):1171-1200
The techniques aimed at adhesion strength measurement between reinforcing fibers and polymer matrices (the pull-out and microbond tests) involve the measurement of the force, F max, required to pull out a fiber whose end is embedded in the matrix. Then, this maximum force value is used to calculate such interfacial parameters as the apparent bond strength, τapp, and the local interfacial shear strength (IFSS), τd. However, it has been demonstrated that the F max value is influenced by interfacial friction in already debonded regions, and, therefore, these parameters are not purely 'adhesional' but depend, in an intricate way, on interfacial adhesion and friction. In the last few years, several techniques for separate determination of adhesion and friction in micromechanical tests have been developed, but their experimental realization is rather complicated, because they require an accurate value of the external load at the moment of crack initiation. We have developed a new technique which uses the relationship between the maximum force and the embedded length ('scale factor') to separately measure fiber-matrix interfacial adhesion and friction. Using the equation for the current crack length as a function of the applied load, based on a stress criterion of interfacial debonding, we modeled the pull-out and microbond experiments and obtained the maximum force value versus the embedded length. By varying τd and interfacial friction, τf, to fit experimental plots, both interfacial parameters were estimated. The micromechanical tests were modeled for three types of specimen geometries (cylindrical specimens, spherical droplets, and matrix hemispheres in the pull-out test) with different levels of residual thermal stresses and interfacial friction. The effect of all these factors on the experimental results is discussed, and the importance of specimen geometry is demonstrated. One of the most interesting results is that the 'ultimate' IFSS (the limiting τapp as the embedded length tends to zero) is not always equal to the 'local' bond strength. 相似文献
6.
《Journal of Adhesion Science and Technology》2013,27(11):1543-1560
Black oxide is a conversion coating applied onto the copper substrate to improve its interfacial adhesion with polymeric adhesives. A comprehensive study is made to characterize the black oxide coating using various characterization techniques, including SEM, XPS, AFM, XRD, Auger electron spectroscopy, TEM, D-SIMS, RBS and contact angle measurements. It was found that the oxide coating consisted of cupric and cuprous oxide layers from the top surface to inside. The cuprous oxide layer was formed on the copper crystal surface, on which densely-packed fibrillar cupric oxide grew continuously until saturation. The cupric oxide had a fibrillar structure with high roughness at the nanoscopic scale, whereas the cuprous oxide was rather flat and granular. There was a continuous change in oxide composition with no distinct boundary between the two oxide layers. The bond strength between the epoxy resin and the oxide coated copper substrate increased rapidly at a low level of oxide thickness, and became saturated at thicknesses greater than about 800 nm. There were similar dependences of bond strength on surface roughness, oxide thickness especially of cupric oxide and surface energy, reflecting the importance of these surface characteristics in controlling the interfacial adhesion. 相似文献
7.
《Journal of Adhesion Science and Technology》2013,27(13):1677-1689
The effect of various silane coupling agents on glass fiber surfaces has been studied in terms of the surface energetics of fibers and the mechanical interfacial properties of composites. γ-Methacryloxypropyltrimethoxysilane (MPS), γ-aminopropyltriethoxysilane (APS), and γ-glycidoxypropyltrimethoxysilane (GPS) were used for the surface treatment of glass fibers. From contact angle measurements based on the wicking rate of a test liquid, it was observed that silane treatment of glass fiber led to an increase in the surface free energy, mainly due to the increase of its specific (or polar) component. Also, for the glass fiber-reinforced unsaturated polyester matrix system, a constant linear relationship was observed in both the interlaminar shear strength (ILSS) and the critical stress intensity factor (KIC) with the specific component, γS SP, of the surface free energy. This shows that the hydrogen bonding, which is one of the specific components of the surface free energy, between the glass fibers and coupling agents plays an important role in improving the degree of adhesion at the interfaces of composites. 相似文献
8.
《Journal of Adhesion Science and Technology》2013,27(9):1215-1223
The interest in studies on the physicochemical surface properties of bacteria has increased because they are related to the causes of the initial adhesion of microorganisms to biomaterials and the subsequent biofilm formation on indwelling medical devices. The determination of physicochemical parameters such as hydrophobicity or surface tension is usually done at room temperature, not taking into account the real temperature at which bacteria cause infection inside the human body. In this work, the influence of the experimental temperature on the surface physicochemical characteristics and adhesion behaviour of Enterococcus faecalis ATCC29212 to glass and silicone has been studied. Water, formamide and diiodomethane contact angles on bacterial lawns changed when the experimental temperature was increased from 22°C to 37°C. Moreover, hydrophobicity, as determined by water contact angle, increases with temperature, in agreement with the higher and lower adhesion to silicone and glass, respectively, observed at 37°C, with respect to the results at 22°C. Also, when the formamide and diiodomethane contact angles are considered, the changes in the adhesion behaviour to glass and silicone are predicted by the sum of Lifshitz-van der Waals and acid-base interaction free energies if the measurement temperature is the same as the bacterial growth temperature, i.e. 37°C. 相似文献
9.
《Journal of Adhesion Science and Technology》2013,27(14):1407-1424
A nanoparticle dispersion is known to enhance the mechanical properties of a variety of polymers and resins. In this work, the effects of silica (SiO2) nanoparticle loading (0–2 wt%) and ammonia/ethylene plasma-treated fibers on the interfacial and mechanical properties of carbon fiber–epoxy composites were characterized. Single fiber composite (SFC) tests were performed to determine the fiber/resin interfacial shear strength (IFSS). Tensile tests on pure epoxy resin specimens were also performed to quantify mechanical property changes with silica content. The results indicated that up to 2% SiO2 nanoparticle loading had only a little effect on the mechanical properties. For untreated fibers, the IFSS was comparable for all epoxy resins. With ethylene/ammonia plasma treated fibers, specimens exhibited a substantial increase in IFSS by 2 to 3 times, independent of SiO2 loading. The highest IFSS value obtained was 146 MPa for plasma-treated fibers. Interaction between the fiber sizing and plasma treatment may be a critical factor in this IFSS increase. The results suggest that the fiber/epoxy interface is not affected by the incorporation of up to 2% SiO2 nanoparticles. Furthermore, the fiber surface modification through plasma treatment is an effective method to improve and control adhesion between fiber and resin. 相似文献
10.
《Journal of Adhesion Science and Technology》2013,27(3-4):227-241
Young's equation describes the wetting phenomenon in terms of the contact angle between a liquid and a solid surface. However, the contact angle is not the only parameter that defines liquid–solid interactions, an additional parameter related to the adhesion between the liquid drop and the solid surface is also of importance in cases where liquid sliding is involved. It is postulated that wetting which is related to the contact angle, and interfacial adhesion, which is related to the sliding angle, are interdependent phenomena and have to be considered simultaneously. A variety of models that relate the sliding angle to the forces developed along the contact periphery between a liquid drop and a solid surface have been proposed in the literature. Here, a modified model is proposed that quantifies the drop-sliding phenomenon, based also on the interfacial adhesion that develops across the contact area of the liquid/solid interface. Consequently, an interfacial adhesion strength parameter can be defined depending on the mass of the drop, the contact angle and the sliding angle. To verify the proposed approach the adhesion strength parameter has been calculated, based on experimental results, for a number of polymer surfaces and has been correlated with their composition and structure. The interaction strength parameter can be calculated for any smooth surface from measurements of the contact and the sliding angles. 相似文献
11.
《Journal of Adhesion Science and Technology》2013,27(6):563-587
The effects of nanoroughness and chemical composition on the contact and sliding angles on hydrophobic surfaces were studied theoretically and experimentally. A theoretical model based on forces developed at the contact area between a liquid drop and hydrophobic smooth or nanoroughened surface was developed and compared with the existing models, which are based on forces developed at the periphery between the drop and the solid surface. The contact area based model gives rise to an interfacial adhesion strength parameter that better describes the drop-sliding phenomenon. Consequently, relationships were derived describing the dependence between the interfacial adhesion strength of the liquid drop to the surface of a given composition, the mass of the drop, the measured contact angles and the sliding angle. For a given surface chemistry, the sliding angle on a nanometric roughened surface can be predicted based on measurements of contact angles and the sliding angle on the respective smooth surface. Various hydrophobic coatings having different surface nanoroughnesses were prepared and, subsequently, contact angles and sliding angles on them as a function of drop volume were measured. The validity of the proposed model was investigated and compared with the existing models and the proposed model demonstrated good agreement with experimental results. 相似文献
12.
《Journal of Adhesion Science and Technology》2013,27(1):123-139
In this paper, the lap shear strength of a co-cured single lap joint subjected to a tensile load was investigated by experimental analysis. Co-cured joint specimens with several different bonding parameters such as bond length, surface roughness, and stacking sequence of the composite laminate were fabricated and tested. The dependence of the lap shear strength of the co-cured joint on the bonding parameters was investigated from the experimental results. The failure mechanism of the co-cured single lap joint was partially cohesive failure. The lap shear strength of the co-cured single lap joint was significantly affected by the bond length and the stacking sequence of the composite laminate. However, the effect of surface roughness on the lap shear strength of the co-cured single lap joint was not so significant. 相似文献
13.
《Journal of Adhesion Science and Technology》2013,27(1):99-107
Ultrahigh-modulus polyethylene fibers were treated with atmospheric pressure He plasma on a capacitively coupled device at a frequency of 7.5 kHz and a He partial vapor pressure of 3.43 × 103 Pa. The fibers were treated for 0, 1, and 2 min. Microscopic analysis showed that the surfaces of the fibers treated with He plasma were etched and that the 2-min He plasma-treated group had rougher surfaces than the 1-min He plasma-treated group. XPS analysis showed a 200% increase in the oxygen content and a 200% increase in the concentration of C—O bonds (from 11.4% to 31%) and the appearance of C=O bonds (from 0% to 7.6%) on the surface of plasma-treated fibers for the 2-min He plasma-treated group. In the microbond test, the 2-min He plasma-treated group had a 100% increase of interfacial shear strength over that of the control group, while the 1-min He plasma-treated group did not show a significant difference from the control group. The 2-min He plasma-treated group also showed a 14% higher single-fiber tensile strength than the control group. 相似文献
14.
《Journal of Adhesion Science and Technology》2013,27(12):1471-1484
The group contribution method of UNIFAC is used to investigate the influence on adhesion of thermodynamic compatibility between the filler surface and the polymeric matrix in filled polymeric composites. Compatibility is enhanced between polymers and mineral surfaces through the use of silane coupling agents of varying chemistry. In this study, glass beads were treated with ten different organofunctional silanes intended to induce differences in interfacial strength. Interfacial strength measurements were obtained from tests in which single, silane-treated glass beads were embedded in rectangular poly(vinyl butyral) specimens subjected to uni-axial stress until interfacial failure occurred at one of the poles of the sphere. The UNIFAC method was used to estimate the Gibbs free energies of mixing using the chemical structure of the polymer repeat unit and each of the silane organofunctional groups, and these values were correlated with the measured interfacial strengths. The results indicate that enhanced interfacial strength corresponds to systems with more favorable thermodynamic mixing. 相似文献
15.
《Journal of Adhesion Science and Technology》2013,27(15):1513-1527
The aging effects of atmospheric pressure plasma treated fiber surfaces are important for storage and processing of the fibers. One of the high-performance fibers, ultrahigh modulus polyethylene (UHMPE) fiber, was chosen as a model system to investigate the aging process of atmospheric pressure plasma jet (APPJ) treated fibers surfaces 0, 7, 15 and 30 days after initial plasma treatment. The fiber was first plasma-treated and then stored at temperatures varying from ?80 to 80°C on the same relative humidity (RH, 0%) and on RH of 0%, 65% and 100% at the same temperature of 20°C. Immediately after the plasma treatment, scanning electron microscope (SEM) showed the roughened fiber surface. X-ray photoelectron spectroscopy analysis showed changed surface chemical compositions. Contact-angle measurement showed increased surface wettability and microbond test showed an increase in IFSS. With increasing relative humidity or decreasing temperature, the IFSS value decreased and the contact angle increased more slowly. However, after 30 days, the IFSS values and contact angles reached a similar level for all groups. Moisture showed no effect on the single fiber tensile strengths during aging. The reasons for the observed aging behavior could be that decreasing temperature or increasing relative humidity hindered the surface rearrangement of polymer chains after plasma treatment. 相似文献
16.
《Journal of Adhesion Science and Technology》2013,27(3-4):211-225
In this study we investigated the effects of using four additives, wheat flour (WF), tannin, rice husk (RH) and charcoal, to melamine-formaldehyde (MF) resin for decorative veneer and base plywood in engineered flooring in order to reduce the formaldehyde emission levels and improve the adhesion properties. We determined the effects of variations in hot-press time, temperature and pressure on the bonding strength and formaldehyde emission. Blends of various MF resin/additive compositions were prepared. To determine and compare the effects of the additives, seven MF resin blends were prepared with the four different additives: four with a wt ratio of 8:2 (MF/WF, MF/tannin, MF/RH and MF/charcoal), and three in the wt ratio of 8:1:1 (MF/WF/tannin, MF/WF/RH and MF/WF/charcoal). The desiccator and perforator methods were used to determine the level of formaldehyde emission. The formaldehyde emission level decreased with all additives, except for RH. At a charcoal addition of only 20%, the formaldehyde emission level was reduced to nearly 0.1 mg/l. Curing of the high WF and tannin content in this adhesive system was well processed, as indicated by the increased lap-shear strength. In the case of WF, the lap shear strength was much lower due to the already high temperature of 130°C. The adhesive layer was broken when exposed to high temperature for extended time. In addition, both WF and tannin showed good mechanical properties. With increasing WF or tannin content, the initial adhesion strength increased. The MF resin samples with 20% added tannin or WF showed both good lap shear and initial adhesion strengths compared to the pure MF resin. 相似文献
17.
《Journal of Adhesion Science and Technology》2013,27(8):627-638
The adhesion properties of polychloroprene can be improved by addition of such materials as piperylene–styrene co-polymer (PSC), VeoVa-10 polymer, VeoVa-11/methyl methacrylate/2ethylhexyl acrylate co-polymer (VeoVa-11/MMA/2EHA) and poly(vinyl acetate) waste (wPVAc). Here, the relationship between adhesion properties and surface tension of polychloroprene was investigated. Contact angle measurements have been used to study the effects of nature and content of polymeric additives on the adhesion and surface properties of polychloroprene. Low-surface-tension VeoVa-10 polymer has the tendency to migrate to the surface of polychloroprene; thus, adhesion is determined mainly by this additive property. Enrichment of polychloroprene film bottom layer by the additive was observed using high-surface-tension PSC and wPVAc. In this case, the adhesion properties of polychloroprene depend on the interactions at the interface. Adhesion properties of polychloroprene were found to depend not only on compatibility between adhesive components, but also on compatibility between the adherend and the adhesive. 相似文献
18.
《Journal of Adhesion Science and Technology》2013,27(3-4):319-330
The selection of the most appropriate surfacing technique is influential in the success of bonding, painting and varnishing processes. The objective of the study was to determine which surfacing technique was the most appropriate when applied as the final process in the production of structural wood members, which were subjected to shearing. The study also includes the effect on shear strength of the variables, such as type of wood, plane of cut, type of adhesive and pressing pressure, as they are directly related to the main objective of the study. In view of this objective, the changes in shear strength on radial and tangential cut surfaces of Oriental beech (Fagus orientalis Lipsky) and Scotch pine (Pinus sylvestris L.) woods having different roughness values as a result of sawing with a circular ripsaw, planing and sanding, and bonded with polyurethane (PU) and poly(vinyl acetate) (PVAc) adhesives at 3, 6 and 9 MPa pressure, were studied. The 936 specimens prepared with the objective of determining the effects of variables on bond performance were subjected to a shear test in a universal test equipment in accordance with the ASTM D 905-98 standard. The highest shear strength (13.85 N/mm2) was obtained for the Oriental beech specimens cut from their tangential surfaces with a circular ripsaw, which were glued with PVAc adhesive by applying a pressure of 9 MPa. The lowest value (4.22 N/mm2) was obtained in the specimens planed from their tangential surfaces, which were glued with PU adhesive by applying a pressure of 3 MPa. The specimens obtained from Oriental beech wood showed a higher shear strength compared to the specimens obtained from Scotch pine. In general, in both species of wood, the specimens glued with PVAc adhesive, both on the tangential surfaces and on the radial surfaces, produced higher shear strengths compared to the specimens glued with PU adhesive. 相似文献
19.
《Journal of Adhesion Science and Technology》2013,27(15):1649-1668
The objective of this study was to examine the effects of interfacial chemistry on the interfacial micromechanics of cellulose fiber/polymer composites. Different interfacial chemistries were created by bonding polystyrene (a common amorphous polymer) to fibers whose surfaces contained different functional groups. The chemical compatibility within the interphase was evaluated by matching the solubility parameters (δ) between the polymer and the induced functional groups. The physico-chemical interactions within the interphase were determined using the Lifshitz–van der Waals work of adhesion (W a LW) and the acid–base interaction parameter (I a?b) based on inverse gas chromatography (IGC). The micromechanical properties of the fiber/polymer interphase were evaluated using a novel micro-Raman tensile test. The results show that the maximum interfacial shear stress, a manifestation of practical adhesion, can be increased by increasing the acid–base interaction (I a?b) or by reducing the chemical incompatibility (Δδ) between the fibers and polymer. A modified diffusion model was employed to predict, with considerable success, the contribution of interfacial chemistry to the practical adhesion of cellulose-based fibers and amorphous polymers. The increased predictability, coupled with the existing knowledge of the bulk properties of both fibers and matrix polymer, should ultimately lead to a better engineering of composite properties. 相似文献
20.
《Journal of Adhesion Science and Technology》2013,27(6):831-846
A mathematical procedure was developed to utilize the complementary energy method, by minimization, in order to obtain an approximate analytical solution to the 3D stress distributions in bonded interfaces of dissimilar materials. The stress solutions obtained predict the stress jumps at the interfaces, which cannot be captured by the current FEA methods. As a novel method, the penalty function is used to enforce the displacement boundary conditions at the interfaces. Furthermore, the mathematical procedure developed enables the integration of different interfacial topographies into the solution procedure. In order to incorporate the effects of surface topography, the interface is expressed as a general surface in Cartesian coordinates, i.e. F(x, y, z) = 0. In this paper, the scarf interface problem, i.e. y = x/2 surface is considered for verification of the method by comparison with finite element analysis (FEA) results. Comparison of the results reveals our new mathematical procedure to be a promising and efficient method for optimizing interface topographies. 相似文献