首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this work, interconnect/electrode sheet/interconnect sandwiches are assembled by designing interfacial contact between interconnects and electrodes for planar solid oxide fuel cells (SOFCs). Their area specific resistance (ASR) values of different contact methods under isothermal oxidation and thermal cycling are recorded by four‐point method. The ASR of SUS430/Ni–YSZ/SUS430 anode sandwich with NiO current collecting layer is close to that of anode sandwich without NiO current collecting layer during isothermal operation, but smaller and more stable during thermal cycling. Meanwhile, the lowest ASR is obtained in SUS430/LSM–YSZ/SUS430 cathode sandwich with LSM coated interconnect and LSM current collecting layer among various contact methods between interconnects and cathodes, and remains constant under isothermal oxidation and thermal cycling. Contact resistance between cathodes and interconnects is the main source of the SOFC stack resistance. A real stack with three anode‐supported cells is assembled and tested under thermal cycling to verify the effect of different contact methods between interconnects and electrodes on performance of stack repeating unit. The degradation rate and ASR values of repeating unit inside the stack indicate that the contact between LSM coated interconnect and LSM current collecting layer on cathode side is the optimized contact.  相似文献   

2.
Measurements of the thermal conductivity of thin dielectric films in the last ten years have established that thin film thermal conductivity may be much lower than that of the corresponding bulk solid, by as much as two orders of magnitude, and that significant interfacial thermal resistance may be present along the film/substrate interface. We review such measurements of thin film thermal conductivity and interfacial thermal resistance, and use the heat conduction equation to determine their implications for the localized heating of thermally anisotropic thin films bonded to substrates. It is found that for surface heating an equivalent isotropic film can be established and that the presence of large interfacial thermal resistance leads to a strong dependence of film thermal conductivity on film thickness, especially for thin films. A microscopic model of the film/substrate interface is used to establish the dependence of the interfacial thermal resistance on porosity along the interface.  相似文献   

3.
A finite element analysis (FEA) modeling technique was used to predict the interfacial temperature as a function of time during the sealing of semicrystalline polymer films. An experimental technique using micro-thermocouples to measure rapidly changing interfacial temperatures during sealing was also developed. Agreement between predicted interfacial temperature profiles and measured values for polyethylene films was good except at temperatures substantially above the final melting point of the polymer. This deviation is caused by film-thickness changes occurring during sealing that are not taken into account in the calculations. The effect of heat-sealing process variables (seal bar temperature, dwell time, and pressure) on seal properties (seal strength, seal elongation, and seal energy) of polyethylene films has also been quantitatively determined. Seal properties are determined primarily by the maximum temperature achieved at the interface during heat sealing. Dwell time must be sufficiently long to bring the interfacial temperature to a desired level, but longer times at a given interfacial temperature do not improve seal properties at the conditions of our experiments. A slight pressure is helpful in bringing two microscopically uneven film surfaces into intimate contact, but higher pressure has no beneficial influence on seal properties. However, increased pressures and dwell times at temperatures above the final melting point of the polymer are detrimental to seal appearance due to material deformation in the sealing area. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
We have uncovered some unusual thermal interface properties of a three-dimensional, flexible and interconnected graphene foam (GF). The thermal interfacial resistance of GF at Si–Al interface is as low as 0.04 cm2K W−1, which is one order of magnitude lower than conventional thermal grease and thermal paste-based thermal interfacial material (TIM). The thermal contact resistance was found to dominate the overall interfacial resistance of GF-based TIM, in as much as the bulk thermal conductivity of GF is rather high. The contact pressure-dependent thermal interfacial resistance of GF exhibits an asymptotic behavior, which converges into a plateau value at an ultralow contact pressure (∼0.1 MPa). Significantly, the GF-based TIM has shown a superior performance to vertically aligned carbon nanotubes currently held as the gold standard (at least ∼75% improvement in thermal interfacial resistance at Si–Al interface), thus providing a strong candidate for the next generation of high-performance carbon-based TIM.  相似文献   

5.
The effects on adhesive joint strength of four pressure-temperature histories, each over the range of pressures from 1 to 1500 bars and temperatures from 25 to 200°C, has been investigated with polystyrene-Pyrex glass butt joint specimens. The various pressure-temperature histories were designed to show the separate effects of permanent stresses, transient stresses and interfacial contact on joint strength. This strength increased as the number of stress concentration loci were reduced through application of high contact pressures on the melt. However, isobaric solidification of the polymer led to a maximum in fracture stress as a function of applied molding pressure because of the existence of a critical pressure at which permanent thermal stresses were minimized. A series of isothermal compression-decompression molding operations showed fracture stress to increase with interfacial contact area until maximum contact was achieved. A 100 per cent gain in bond strength was realized when interfacial contact was maximized concurrent with minimizing both the permanent and transient stresses which normally develop when the adhesive joint is formed. Microscopic observations of interfaces in both non-fractured and fractured butt joints established a qualitative relationship between debonding, the mechanism of fracture, and joint strength.  相似文献   

6.
The effects on adhesive joint strength of four pressure-temperature histories, each over the range of pressures from 1 to 1500 bars and temperatures from 25 to 200°C, has been investigated with polystyrene-Pyrex glass butt joint specimens. The various pressure-temperature histories were designed to show the separate effects of permanent stresses, transient stresses and interfacial contact on joint strength. This strength increased as the number of stress concentration loci were reduced through application of high contact pressures on the melt. However, isobaric solidification of the polymer led to a maximum in fracture stress as a function of applied molding pressure because of the existence of a critical pressure at which permanent thermal stresses were minimized. A series of isothermal compression-decompression molding operations showed fracture stress to increase with interfacial contact area until maximum contact was achieved. A 100 per cent gain in bond strength was realized when interfacial contact was maximized concurrent with minimizing both the permanent and transient stresses which normally develop when the adhesive joint is formed. Microscopic observations of interfaces in both non-fractured and fractured butt joints established a qualitative relationship between debonding, the mechanism of fracture, and joint strength.  相似文献   

7.
In many electroanalytical and bio-electrochemical applications conductive diamond films act as contact layers. These films are grown starting from a Si-surface seeded with undoped diamond particles. In this study, the impact of the seeds and their electrical properties on the interfacial resistance through the diamond film − substrate is determined on the nanometer-scale by probing the nucleation side of the conductive diamond films using scanning spreading resistance microscopy. We evidence that, although the diamond film is grown in a B-rich ambient, no significant B incorporation occurs into the particles and they remain non-conductive after growth. We demonstrate that they impact strongly on the interfacial resistance, increasing it by more than one order of magnitude depending on the seed layer coverage. We further establish a model linking the seed size and density to this interfacial resistance, with excellent agreement to our experimental results. Based on this model, we predict that it is necessary to limit the undoped particle density to less than 5 × 1010 cm−2, for 20 nm particle size, in order to eliminate the contribution of the undoped seeds to the interfacial resistance. Our model also indicates that the fundamental solution to this problem lies in the use of B-doped seeds.  相似文献   

8.
An epoxy-terminated hyperbranched polyester (EPHBP) was prepared by the reaction of hyperbranched polyester (HBP) and epichlorohydrin (EPH). Herein, we have synthesized a new kind of highly epoxy ended branched polyester to enhance the chemical bonding at the interfaces and to reduce the melt viscosity. The structural investigation of the hyperbranched polyesters was carried by spectroscopic techniques such as nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR) while molar masses were determined using gel permeation chromatography (GPC). The effect of the content of hexamethoxy methyl melamine (HMMA) and 3-amino propyltrimethoxysilane (APTMS) mixture on the thermal, mechanical and interfacial properties of EPHBP resins were also studied. The thermal, dynamic mechanical and mechanical properties of the heat cured coating films were also investigated. The combined analysis of the results indicate that the introduction of APTMS results in the enhancement of the thermal stability, glass-transition temperature (Tg), storage modulus, tensile strength and contact angle of the cured films. The improvement in properties depends on the APTMS content of the cured films. The cured films have also shown higher elongation at break due to the use of HMMA and presence of unmodified epoxide groups which indicates good flexibility and toughness of the coating films.  相似文献   

9.
Thermoelastic properties of various bi-continuous porous ceramics are simulated by a new finite element model. The model considers various particle shapes which allow for an independent variation of pore volume and particle contact area. Phenomena like neck formation, agglomeration, particle size distribution and coordination are included in the model geometry. Particle arrangement is modelled using cubic super cells as well as random particle positions. Young's moduli, Poisson's ratios and stress concentration factors are simulated and thermal shock resistance is estimated from these data. A close correlation between thermal conductivity and Young's modulus is found for all types of microstructure. Stress concentration is strongly affected by the particle shapes in the contact region.  相似文献   

10.
浮阀塔板气液相界面积   总被引:1,自引:1,他引:0       下载免费PDF全文
梁银春  周政  张志炳 《化工学报》2007,58(5):1232-1237
研究了浮阀塔板上的气液接触状况以及相界面积。同时根据湍流液体中气泡变形与破碎的机理,建立了计算浮阀塔板相界面积的理论模型。该模型可用于比较不同浮阀结构对相界面积的影响。在理论研究的基础上,设计了一种新型浮阀——导向菱形浮阀。通过实验证明该浮阀塔板的相界面积得到显著提高。  相似文献   

11.
Shadab Shaikh  Khalid Lafdi 《Carbon》2007,45(4):695-703
Experimental and theoretical analyses were used to study the effect of thermal contact resistance in two materials, aluminum and graphite. Experimental investigation included the use of a modern laser flash device to measure the effective thermal conductivity of each material for three different cases: in direct contact, with a graphite coating and with a thin sheet of carbon nanotube (CNT) thermal interface material (TIM). For both materials total thermal resistance values were determined corresponding to different cases for same contact pressure. Results showed that the CNT TIM produced the minimum thermal contact resistance. A theoretical study was carried out to compare the experimental results with thermal resistance models from the literature. Based on the surface roughness of the materials tested, two models were used. Both models showed reasonable agreement with the experimental results with an error of less than 6.5%. The results demonstrate the effectiveness of CNT materials in improving the thermal conductance of contacting surfaces.  相似文献   

12.
The bonding of polylactic acid (PLA) films was investigated for a broad range of temperatures and contact times above the glass transition temperature in a lap shear joint geometry using an impulse welding system. It was observed that interfacial strength was linearly dependent to the fourth root of welding time until it approached the bulk material strength. Using models based on reptation theories, the interfacial strength of lap shear welds was estimated based on thermal histories. In more detail, the activation energy for interfacial healing and self‐diffusion coefficient was calculated based on shear strength measurements of samples welded with well‐defined thermal histories. The parameters were then used to predict interfacial strength with varying temperature histories. This is the first work to measure the activation of energy for the interfacial welding PLA. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

13.
The diffusion-controlled evaporation of small circular volatile liquid films from solid surfaces was monitored by employing video microscopy from a plan view and then applying digital image analysis techniques. The decrease of the liquid-solid contact area of these films during the last stages of the evaporation was found to be linear with time. This paper presents experimental results of four organic liquid films (n-nonane, n-octane, toluene, n-butanol) on three substrates poly(methyl methacrylate), poly(ethylene terephthalate) (Mylar), and glass. The linear decreases of the surface areas of hanging drops from a polypropylene fiber for the same liquids were also monitored using both plan and side view video cameras for comparison. Analyses of optically recorded liquid film and drop shapes were carried out and a diffusion model depending on the presence or absence of the substrate was developed. By combining the experimental area decrease of a spherical drop due to the diffusion-controlled evaporation with that of a small spherical cap shaped liquid film resting on a solid surface, it is possible to calculate the small contact angles (less than 10°) of the wetting thick liquid films on solids. The relationship between film evaporation rate and the solid-liquid interfacial interactions is also discussed.  相似文献   

14.
Diamond, diamond-like, and titanium nitride (TiN) films have extremely desirable chemical, electrical, and mechanical properties for a variety of applications ranging from corrosion- and erosion-resistant coatings to electronics packaging of microelectronic devices. However, many of these applications are limited by the poor adhesion of these films to metal and polymer substrates. The adhesion of a film is determined primarily by internal stresses in the film, thermal and lattice mismatch, and most importantly by interfacial bonding. We have developed methods based on mechanical interlocking, chemical bonding, grading of interatomic potentials, and the multilayer discontinuous thin films approach to control stresses and strains in thin films. A substantial improvement in adhesion and wear properties is obtained by using these methods selectively. We review issues related to the adhesion of diamond, diamond-like carbon, and TiN films on metal and polymeric substrates.  相似文献   

15.
Nowadays, polyimide (PI) with low dielectric constant is expected to be widely applied in microelectronics. For this reason, hollow glass microspheres (HGM) modified by silane coupling agent KH-550 (K-HGM), a series of HGM/PI and K-HGM/PI composite films with excellent thermal performance, hydrophobic and low dielectric constant were fabricated by in situ polymerization. The effect of HGM/K-HGM content on the properties of composite films was studied. The superior heat resistance of HGM can improve the thermal performance of composite films. Due to silane coupling agent KH-550, K-HGM exhibits a good interfacial compatibility with PI matrix and forms an interfacial adhesion region. With the HGM loading of 6%, comparing with pure PI films, the glass transition temperatures (Tg) of composite films were dramatically increased by 32.3°C. Especially, the low dielectric constant of 2.21 and dielectric loss of 0.0059 at 1 MHz were obtained for the PI/K-HGM composite film with addition of 8 wt%. Thus, PI/K-HGM composite films show more excellent performance. The current work provides a promising solution for fabrication of PI with low dielectric constant and superior thermal performance that may be applied in microelectronics industry.  相似文献   

16.
Hybrid organic–inorganic polymer films composed of an epoxy resin crosslinked with a flexible diamine hardener, and a silica reinforcing phase were produced and their thermo-mechanical properties were determined. Two types of hybrid epoxy–silica polymer films, named EAS-1 and EAS-2, were obtained by hydrolysis and condensation of various amounts of tetraethoxysilane within epoxy network matrix. In EAS-2 hybrids, minor amounts of an amine silane coupling agent were added to enhance interfacial compatibility. FTIR spectroscopy confirmed the formation of organic and inorganic networks. The grafting of amine silane on to the epoxy resin influenced the size and distribution of hyper-branched clusters of silica as indicated by transmission electron microscopy (TEM). The dynamic mechanical and thermal analysis (DMTA) and thermo-gravimetric analysis (TGA) results showed an increase in the storage modulus, the glass-transition temperature, and the thermal stability of hybrid polymer films as compared to the neat matrix. The integration of amine silane coupling agent produced smaller, effectively dispersed silica nanoparticles and consequently improved the ultimate properties of polymer films.  相似文献   

17.
《Ceramics International》2019,45(10):12965-12974
A highly thermally conductive boron nitride nanosheets/cellulose nanofiber (BNNS/CNF) oriented film was prepared by doctor blading method via mechanical shear-induced orientation. The SEM images for cross-sectional parts showed that BNNS were well aligned within the film, forming a good layered structure. The XRD results further confirmed the high orientation effect of BNNS. Due to the excellent thermal stability of BNNS and its good physical barrier effect on the matrix after the orientation treatment, the thermal stability of shear-oriented films was largely improved. Resulting from the shear-induced orientation, BNNS were closely contacted with each other, forming a good thermally conductive pathway within the CNF matrix. Thus the influence of the interfacial thermal resistance was dramatically reduced, and the thermal conductivity of shear-oriented films increased in proportion to filler loading. With 50 wt% BNNS, the thermal conductivity of the shear-oriented film reached 24.66 W/(m·K), which exhibited 1106% enhancement compared to the pure CNF.  相似文献   

18.
石锟  王树博  李微微  谢晓峰  陈靖 《化工进展》2020,39(10):4081-4087
针对质子交换膜燃料电池金属双极板耐蚀性和导电性有待提高的问题,本文用磁控溅射双靶共溅的方法,在316L不锈钢基体表面沉积TiW和TiTa两种非贵金属膜层。通过X射线衍射、扫描电子显微镜-能谱仪、X射线光电子能谱仪、电化学和接触电阻测试等方法,表征了涂覆膜层后不锈钢的微观结构、表面形貌、化学组成、耐腐蚀性和导电性。实验结果表明,磁控溅射制备得到的TiTa膜表面较为均匀,且TiTa膜沉积的不锈钢具有较好的耐腐蚀性,其恒电位极化电流密度能够维持在0.3μA/cm2;从导电性来看,TiW膜与碳纸之间的接触电阻小于TiTa膜。综合考虑材料的各项性能,认为沉积TiTa膜的316L不锈钢有用作金属双极板材料的潜力。  相似文献   

19.
界面接触热阻的研究进展   总被引:12,自引:4,他引:8       下载免费PDF全文
张平  宣益民  李强 《化工学报》2012,63(2):335-349
界面接触热阻(TCR)是电子器件冷却、低温超导薄膜等领域研究中的一个热点。综合评述了对接触热阻的传热机理的研究方法、测量方法以及减小接触热阻的主要措施,介绍了近年来国内外对接触热阻的最新研究成果和进展,现有的研究表明:对于界面接触热阻这一特殊物理问题,其理论研究既要从宏观上定量分析又要在微观上综合考虑声子、电子的散射、辐射等机理;在实验方面,目前的测量精度不够高,实验测量工作有待进一步地完善;在减小接触热阻方面,除了常用的方法外,可以通过在接触表面生长新型的高性能导热材料(碳纳米管等)来实现。对已报道的研究工作进行了总结,指出了今后的研究方向。  相似文献   

20.
胡玉东  刘锦辉  王海东  张兴 《化工学报》2014,65(Z1):251-257
主要完善并利用新近提出的激光拉曼测试方法,在333.15 K环境温度下测量了单根碳纤维的热导率(不考虑接触热阻),并与直流通电法测量结果进行比较,两者符合较好,验证了新提出的激光拉曼测量方法的可行性。同时激光拉曼方法还测量得到了接触热阻、碳纤维的激光吸收率及与空气的对流传热系数,并处理得到考虑接触热阻后修正的碳纤维真实热导率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号