首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 66 毫秒
1.
通过讨论粉末粒径、分散剂、固含量、粘结剂、增塑剂对陶瓷浆料流变性能及打印效果的影响规律,研究了高浓度、良好分散的可打印硼硅酸盐玻璃陶瓷浆料的制备方法,并采用3D打印直写技术实现了硼硅酸盐玻璃陶瓷基板的成型。研究结果表明:当分散剂为质量分数3%,粘结剂为质量分数4%,增塑剂与粘结剂质量比为0. 4,固含量为质量分数46%时,浆料可打印性较好,粘度约为2660 mPa·s。采用所制备浆料打印的基板表面平整,经过烧结后内部结构致密,相对介电常数为5. 4,介电损耗为0. 0017,满足电路基板的使用需求。  相似文献   

2.
采用流延成型工艺制备了硼硅酸盐玻璃/氧化铝陶瓷生瓷带,并经烧结制备了陶瓷试样。研究了烧结温度对所制陶瓷烧结性能、介电性能与微观结构的影响。结果表明:随着烧结温度的升高,所得陶瓷试样的体积密度、烧结收缩和介电常数均先增大后减小;当烧结温度达到850℃时,陶瓷试样中开始析出钙长石晶相;经880℃烧结所得陶瓷性能较佳:体积密度为3.08 g/cm3,在20 MHz下相对介电常数为7.7,介质损耗为2.0×10–4,25~600℃内线膨胀系数为8.3×10–6/℃,满足LTCC基板材料的应用要求。  相似文献   

3.
针对高功率器件、高密度封装等微波通信领域对高性能微波复合基板的迫切需求,该文提出了一种将双螺杆造粒和热压成型结合的新技术,制备了以高抗冲聚苯乙烯(HIPS)为基体、六方氮化硼(h-BN)陶瓷为填料的高导热微波复合基板,并对基板的显微结构、热学性能和介电性能进行了全面表征。结果表明,采用大粒径(?25μm)的h-BN(h-BN25)比小粒径(?5μm)的h-BN(h-BN5)填充后更有利于提高复合基板的热导率(λ),降低其介电损耗(tan δ)。随着h-BN25质量分数(w(h-BN25))从0增加至70%,HIPS/h-BN25微波复合基板的λ从0.13 W·m-1·K-1提高到7.43 W·m-1·K-1(面内)和2.55 W·m-1·K-1(面间),分别是纯HIPS的57倍和20倍,表明采用以上制备技术能实现h-BN在HIPS基体中的定向排列,...  相似文献   

4.
利用固相合成法,以未掺杂的熔融石英砂为基础原料,通过快速升温、短时保温的烧结工艺制备出了具有极低介电常数的熔融石英陶瓷材料。研究了不同烧结温度对材料的烧结特性及介电性能的影响。结果表明:在1 150℃烧结1 h制得的材料,具有较好的性能,其最大相对密度为99%,εr=3.4,tanδ=6.86×10–4(1 MHz),Q.f=12 000 GHz(10 GHz)。  相似文献   

5.
采用固相烧结法制得了不同粒径的铁酸铋(BiFeO3)粉末,随后,采用混杂工艺与放电等离子烧结技术(SPS)结合的方法对BiFeO3单相粉末进行二次烧结,制得了BiFeO3陶瓷.研究了所制陶瓷的介电性能.结果表明,所制BiFeO3陶瓷具有很好的相组织及致密的结构,其相对密度达到97.3%,压电系数d33为13.6 pC/...  相似文献   

6.
以硼硅酸盐系玻璃和Al2O3粉料为原料,采用低温烧结法制备了玻璃/Al2O3系LTCC材料。设计玻璃中碱金属氧化物的质量分数为0~6%,研究了碱金属氧化物添加量和烧成温度对玻璃/Al2O3材料的烧结性能、热性能、介电性能和力学性能的影响。随着碱金属氧化物含量增加,玻璃/Al2O3材料的体积密度、相对介电常数、抗弯强度增加,而介电损耗恶化。当碱金属氧化物添加的质量分数为2%,材料于875℃烧结良好,显示出优异的性能:体积密度为2.84 g/cm3,相对介电常数7.71,介电损耗1.15×10–3(于10 MHz下测试),抗弯强度为158 MPa,热导率为2.65 W/(m·℃),线膨胀系数为7.77×10–6/℃。  相似文献   

7.
微波复合介质基板性能研究   总被引:3,自引:0,他引:3       下载免费PDF全文
周洪庆  刘敏 《微波学报》2002,18(4):71-75
采用微扰法、螺旋圆柱谐振法和带状线谐振法分别对聚四氟树脂复合精细电子陶瓷微波复合介质的复介电常数进行了测量与误差分析。基于扫描电子显微镜 (SEM )观察 ,从微观上解释了辊压工艺对介质介电性能一致性改善的原因。研究了不同的表面处理方法对基板金属化剥离强度的影响规律。  相似文献   

8.
采用传统固相法制备Nd2O3掺杂富钛型(Ba0.75Sr0.25) Ti1+xO3(x为摩尔比)陶瓷,通过扫描电镜及LCR测试系统,研究不同x值、Nd2O3掺杂量及烧结工艺对钛酸锶钡基陶瓷微观结构与介电性能的影响。结果表明,随着x值及Nd2O3掺杂量增大,陶瓷试样均出现柱状第二相。当x=0.01且w(Nd2O3)=0.4%时,陶瓷试样经1 250 ℃烧结2 h后,其室温相对介电常数(εr)高达8.67×103,介电损耗(tan δ)仅为7.87×10-3。随着x值及Nd2O3掺杂量增大,陶瓷的居里峰显著移动。  相似文献   

9.
利用 Ni2 取代Ba(Zn1/3Nb2/3)O3 的B位Zn2 来改善其介电性能.XRD表明,系统的主晶相为立方钙钛矿的BZNN,并有少量第二相如Ba5Nb4O15、BaNb6O16等.当系统中x(Ni2 )=0.7时,1 500 ℃烧结时系统得到优异的介电性能,介电常数为35.7,容量温度系数为-4.7×10-6/℃,损耗tan δ为0.33×10-4(1 MHz).  相似文献   

10.
为了适应基板高载荷、高可靠的要求,制备了一种适用于LTCC应用的高抗弯强度微波介电陶瓷材料。该陶瓷材料由Ca-Mg-Zr-Zn-B-Si微晶玻璃和氧化铝构成。采用差热热重同步分析仪、扫描电镜、X射线衍射分析仪、带谐振腔夹具的矢量网络分析仪和三点抗弯测试仪研究了陶瓷材料的烧结性能、微观结构、抗弯强度和介电性能。860℃烧结15 min获得陶瓷具有最佳致密度,其抗弯强度大于400 MPa,1. 9 GHz频率时εr=8. 12,tanδ=0. 0028;15 GHz频率时εr=7. 96,tanδ=0. 0031。该陶瓷与金、银电极共烧匹配良好,适用于制备LTCC基板。  相似文献   

11.
Dendritic silicon layers are prepared on alumina ceramic by melting and regrowing a CVD Si layer with a BSG encapsulation. Thin-film solar cells fabricated by successive deposition of p- and n+-Si layers on this dendritic silicon exhibit a conversion efficiency of 2.6 percent under AM1 illumination.  相似文献   

12.
针对以国内新研发的Au导体浆料与电阻浆料在Al_2O_3基片表面印制的Au导体/电阻复合厚膜烧结易起泡的现象,在探明起泡原因的基础上,研究了烧结温度、升温速率以及Au层厚度对复合厚膜起泡的影响,进一步优化厚膜工艺,制备出无起泡的复合厚膜。研究表明,烧成温度过高导致的玻璃相浮于复合膜层表面并结晶,烧结过程不充分和Au层厚度不足等导致不能在陶瓷基片/Au层界面形成连续的玻璃相粘结层,界面结合强度大大降低,在陶瓷基片/Au层界面易起泡。在烧结峰值温度为825℃,升温速率为40℃/min,Au导体层厚度为10μm的工艺条件下,复合厚膜与陶瓷基片结合紧密,无起泡现象。  相似文献   

13.
Ceramics are used as thermal conductors and electrical insulators in integrated circuit packaging. We have investigated TEA CO2 laser drilling of green alumina ceramic sheets consisting predominantly of alumina with approximately 10% PVB (polyvinyl butyral) as the polymer binder. Experiments with 9.5 and 10.6 μm wavelengths show that the holes made with a 9.5 μm CO2 laser beam, where a larger percentage of the total laser energy is deposited directly into the polymer binder, are smaller, more straight-sided and cleaner  相似文献   

14.
凝胶注模成型氧化铝陶瓷反射体的制备   总被引:1,自引:0,他引:1  
以微米级氧化铝为原料,采用AM-MBAM凝胶体系,制备出了流动性良好、高固相体积比的浆料,然后采用凝胶注模成型工艺制备出了中空氧化铝陶瓷反射体。研究了分散剂、引发剂、单体浓度及固相含量等关键因素对凝胶注模成型氧化铝陶瓷反射体的影响。结果表明:当分散剂、引发剂、单体的质量分数分别为0.4%,0.08%,7%时,浆料的固相体积分数为55%,黏度达到710 mPa.s,并可制备出表观形貌好,结构致密的氧化铝陶瓷反射体。  相似文献   

15.
Our purpose was to obtain and characterize some collagen/hydroxyapatite (COLL/HA) hybrid composite materials with desired ceramic properties. The ceramic properties of these materials were achieved by combining two drying methods: controlled air drying at 30°C followed by freeze-drying. Through the function of the air drying times, the materials morphology varies from porous materials (when the materials are freeze-dried) up to dense materials (when the materials are air-dried), while the combined drying allows us to obtain an intermediary morphology. The composite materials intended to be used as bone grafts and in a drug delivery system were characterized by XRD, FTIR, SEM, and also by determining the ceramic properties by using the Arthur method. The ceramic properties of these COLL/HA composite materials vary in large range, for instance the density of the materials varies from 0.06 up to 1.5?g/cm(3) while the porosity varies from 96.5% down to 27.5%.  相似文献   

16.
复合衬底CdTe/ZnTe/Si的晶体质量是导致随后外延的HgCdTe外延膜高位错密度的主要原因之一,因此如何提高复合衬底CdTe/Si晶体质量是确保硅基碲镉汞走上工程化的关键所在。降低复合衬底CdTe/Si位错密度方法一般有:生长超晶格缓冲层、衬底偏向、In-situ退火和Ex-situ退火等,本文主要研究Ex-situ退火对复合衬底CdTe/Si晶体质量的影响。研究表明复合衬底经过Ex-situ退火后位错密度最好值达4.2×105cm-2,双晶半峰宽最好值达60arcsec。  相似文献   

17.
高达  王经纬  王丛  许秀娟 《激光与红外》2018,48(8):1005-1008
报道了Si基中短波双色碲镉汞(MCT)的最新研究进展。阻挡层的生长与表征是获得材料参数精确控制、晶体质量良好的Si基中短波双色HgCdTe材料关键所在。经过阻挡层生长工艺优化,解决了双色HgCdTe材料缺陷直径较大的问题。缺陷直径控制在10 μm以内,缺陷密度控制在2000 cm-3以内。并使用光致发光技术(PL),得到了不易直接获得的双色HgCdTe材料阻挡层的组分信息。  相似文献   

18.
以α-Al2O3粉体为主相材料,添加不同含量的ZrO2(体积分数0%~28%),采用流延成型工艺和常压烧结方法制备ZTA陶瓷样品,研究ZrO2的含量、气孔率、基板厚度以及白度对ZTA陶瓷基板力学和光学性能的影响。结果表明:随ZrO2含量增加,断裂韧性和抗弯强度呈现先增大后减小的趋势,ZrO2含量为体积分数20%时达到最大值,分别为5.7 MPa·m1/2和865 MPa;当ZrO2含量低于体积分数12%时,随气孔率增加,反射率升高;此外,ZTA陶瓷基板的厚度增加,反射率升高;白度下降,反射率也随之降低。最终制备出一种反射率达到100.7%,满足LED高光效需求的ZTA陶瓷基板。  相似文献   

19.
氧化铝对钙硼硅基板材料的改性   总被引:1,自引:0,他引:1  
通过添加Al2O3改善了钙硼硅玻璃基板材料的失透现象,研究了Al2O3对钙硼硅材料的烧结性能、相组成、线膨胀系数和介电性能的影响。结果表明:试样的晶相均为CaB2O4、α-石英和CaSiO3,添加Al2O3不能改变晶相种类。当w(Al2O3)为9%时,基础玻璃由失透变为透明;线膨胀系数降低至10.5×10–6℃–1,tanδ低于1.1×10–3,Al2O3添加前后,试样的εr变化不大(10MHz)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号