首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 234 毫秒
1.
建立了一种可以充分利用低温热源驱动而获得制冷量的三热源制冷机模型,考虑传热及工质内部的摩擦、涡流和其它不可逆性对三热源制冷机循环性能的影响,以总传热为优化函数,导出其最小传热面积与三热源熵变化率的关系并得到了热力学第二定律的类比表达式,获得了最佳制冷率与性能系数和传热面的优化关系,分析了工质内部不可逆性对制冷机性能的影响,所得结论可以描述同时受内外不可逆性影响的三热源吸收式制冷机的优化特性,可为吸收式制冷机的优化设计和性能改进提供新的理论途径。  相似文献   

2.
建立一种不可逆的两级吸收式制冷机模型,考虑有限速率传热和工质内部不可逆性对制冷机性能的影响.以总热导率为优化目标函数,获得最小总导热率与热源熵变化率的关系,并得到了热力学第二定律的类比表达式,导出最佳制冷率、性能系数和总热导率之间的优化关系,分析了工质内部不可逆性对制冷机性能的影响,所得结论可以描述同时受内外不可逆性影响的两级吸收式制冷机的优化特性,可为两级吸收式制冷机的优化设计和性能改进提供新的理论途径.  相似文献   

3.
为从热力学角度获得吸收式制冷机更为有用的性能上界,建立其四热源循环模型.该模型将吸收式制冷机视为一个由不可逆卡诺热机驱动的不可逆卡诺制冷机的联合循环系统,考虑热阻及工质内部耗散的不可逆性.运用优化理论,推导出:制冷量与性能系数间的基本优化关系;总热导率在各换热器间的最优分配关系;最大制冷量及相应性能系数的一般表达式.与三热源制冷循环模型相比,四热源制冷循环模型更接近于实际的吸收式制冷机.  相似文献   

4.
将吸收式制冷机视为由不可逆卡诺热机驱动不可逆卡诺制冷机的联合循环系统,应用有限时间热力学理论建立了既考虑内、外不可逆性影响,又考虑有限热容影响的、更接近于实际系统的热力学模型。引入两个内不可逆性参数,分别用于描述热机循环的内不可逆性和制冷循环的内不可逆性。利用所建模型,由拉格朗日乘数法推导出吸收式制冷机的基本优化关系、相应的优化设计条件以及工质的最优工作温度。还利用这些关系式进行了一些分析和讨论,得到了一些有益于实际吸收式制冷机优化设计与改进的简化关系式和重要结论。  相似文献   

5.
将吸收式制冷机视为由不可逆卡诺热机驱动不可逆卡诺制冷机的联合循环系统,应用有限时间热力学理论建立了既考虑内、外不可逆性影响,又考虑有限热容影响的、更接近于实际系统的热力学模型。引入两个内不可逆性参数,分别用于描述热机循环的内不可逆性和制冷循环的内不可逆性。利用所建模型,由拉格朗日乘数法推导出吸收式制冷机的基本优化关系、相应的优化设计条件以及工质的最优工作温度。还利用这些关系式进行了一些分析和讨论,得到了一些有益于实际吸收式制冷机优化设计与改进的简化关系式和重要结论。  相似文献   

6.
自有限时间热力学问世以来,采用内可逆卡诺制冷机理论模型,讨论工质与热源之间的传热不可逆性对制冷机的优化性能的影响,取得了许多重要的结论.由于实际过程是不可逆过程,所以研究和分析各种不可逆损失及其对制冷机的性能的影响,是机器设计的主要任务之一.本文将在内可逆卡诺制冷机的理论模型基础上,考虑在制冷机的压缩和膨胀过程中由于摩擦阻力引起的内部不可逆因素,忽略过程中的散热影响(因为过程进行很  相似文献   

7.
本文研究热阻、摩擦和热漏影响下制冷机传热面积的优化问题,导出制冷机的最佳传热面积比以及最小总传热面积与制冷系数和制冷率间的关系.  相似文献   

8.
考虑全部过程的热阻影响,忽略其它不可逆因素,导出二热源制冷机的最佳性能关系.并应用它讨论了这种制冷机的各种优化性能.  相似文献   

9.
基于回热器计算软件REGEN3.2,通过数值模拟分别研究了热声发动机的频率、输出压比、充气压力以及脉管制冷机的回热器长度对热声驱动的脉管制冷机制冷性能的影响,并预测了该台脉管制冷机的最低制冷温度为45K.实验研究了不同工质、热声发动机输出压比、声功输出装置以及脉管制冷机回热器长度对脉管制冷机性能的影响.实验结果表明,热声驱动的脉管制冷机的优化方向为提高热声发动机的输出压比、降低频率以及适当提高充气压力,这与数值模拟结果吻合较好.实验采用氮气-氦气双工质并以亥姆霍兹共鸣器作为声功输出装置和声压放大器,行波型热声发动机驱动的单级斯特林型脉管制冷机获得了65K的最低制冷温度.  相似文献   

10.
新型热声发动机驱动的脉管制冷机实验研究   总被引:2,自引:1,他引:1  
为完全消除低温系统中的运动部件,简化低温系统结构并提高其可靠性,对自制新型热声发动机驱动的脉管制冷机系统进行了实验研究.对热声发动机的性能进行了实验分析,确定出系统充气压力和制冷机的接口位置,将一台单级小孔型脉管制冷机接到系统中.通过调节小孔阀,对脉管制冷机性能进行了优化.结果表明,以氦气为工质,在充气压力为2MPa时,发动机单独运行时最大压比达1.19,驱动单级小孔型脉管制冷机获得了119K的低温,这为热声制冷机系统应用于天然气液化奠定了良好基础.  相似文献   

11.
讨论了导热规律为qαΔ1/T,仅有热传导不可逆的三热源制冷机的最优性能,导出了有最大制冷率时的制冷系数,从而阐明了热阻的存在、导热规律的不同对三热源制冷机最优性能的影响。  相似文献   

12.
Qiu  SuSu  Ding  ZeMin  Chen  LinGen  Ge  YanLin 《中国科学:技术科学(英文版)》2021,64(5):1007-1016
In this paper, an irreversible thermionic refrigerator model based on van der Waals heterostructure with various irreversibilities is established by utilizing combination of non-equilibrium thermodynamics and finite time thermodynamics. The basic performance characteristics of the refrigerator are obtained. The effects of key factors, such as bias voltages, Schottky barrier heights and heat leakages, on the performance are studied. Results show that cooling rates and coefficients of performances(COPs) can attain the double maximum with proper modulation of barrier heights and bias voltages. Increasing cross-plane thermal resistance as well as decreasing electrode-reservoir thermal resistance and reservoir-reservoir thermal resistance can enhance the performance of the device. The optimal performance region is the interval between the maximum cooling rate point and the maximum COP point. By modulating the bias voltage, the working state of the device can fall into the optimal performance region. The optimal performance of the refrigerator when using single layer graphene and a few layers graphene as electrode material is also compared.  相似文献   

13.
用有限时间热力学方法分析不可逆卡诺热机循环性能,考虑工质与高、低温热源问换热器的热阻损失和循环工质内部的不可逆损失,以循环周期为优化函数,导出不可逆卡诺热机最短循环周期与冷热源熵变化量的关系并得到了热力学第二定律的类比表达式,获得了最佳效率,热源熵变化量和循环周期的优化关系,由此对不可逆卡诺热机的效率、输出功率、冷热源熵变化率和工质在两个等温过程中的温度等参数作了较详细的讨论,所得结论可为不可逆卡诺热机的优化设计和最佳工况选择提供新的理论途径。  相似文献   

14.
研究了在普通的导热规律q∝ΔTn下考虑热阻和热漏以及其他不可逆因素时不可逆卡诺热机的性能,得出了较普遍的功率与效率之间优化关系  相似文献   

15.
用有限时间热力学方法分析不可逆卡诺热机循环性能,考虑工质与高、低温热源间换热器的热阻损失和循环工质内部的不可逆损失,以循环周期为优化函数,导出不可逆卡诺热机最短循环周期与冷热源熵变化量的关系并得到了热力学第二定律的类比表达武,获得了最佳效率,热源熵变化量和循环周期的优化关系,由此对不可逆卡诺热机的效率、输出功率、冷热源熵变化率和工质在两个等温过程中的温度等参数作了较详细的讨论,所得结论可为不可逆卡诺热机的优化设计和最佳工况选择提供新的理论途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号