首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role, origin, and mode of action of the lipid messenger ceramide in programmed cell death and its linkage to receptor-associated apoptotic signal proteins is still unresolved. We show here in Kym-1 rhabdomyosarcoma cells that tumor necrosis factor (TNF)-induced apoptosis is preceded by a multiphasic increase in intracellular ceramide levels. Distinct enzymes were found to contribute to three waves of ceramide, neutral sphingomyelinase, ceramide synthase, and acid sphingomyelinase, with peak activities at 1-2, 40, and around 200 min, respectively, the latter coinciding with progression to irreversible damage. In parallel with ceramide generation, TNF-mediated inhibition of glucosylceramide and sphingomyelin (SM) synthase prevents the immediate metabolization of this lipid mediator. In the presence of benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (Z-VAD-fmk) or benzyloxycarbonyl-Asp-Glu-Val-Asp-chloromethyl ketone (Z-DEVD-cmk), a broad spectrum and a caspase 3-selective inhibitor, respectively, glucosylceramide and SM synthase activity remains unaffected by TNF, and intracellular ceramide accumulation is not observed. Our results show that several lipid enzymes contribute to generation of ceramide in response to TNF and identify glucosylceramide and SM synthase as important regulators of the kinetics and magnitude of intracellular ceramide accumulation. As glucosylceramide and SM synthase activity is caspase-sensitive, our data suggest a novel functional link between caspase(s) and ceramide during apoptotic processes.  相似文献   

2.
It is not well appreciated that nutritional status can modulate apoptosis, a process that eliminates unwanted or damaged cells. Choline is an essential nutrient, and its absence induces apoptosis. When PC12 cells were cultivated in a choline-free medium, apoptosis was induced (27.4% of cells apoptotic at 72 h as compared to 4.4% in control medium). In choline-free medium at 72 h, there was a 49% decrease in phosphatidylcholine concentration (P<0.01) and a 34% decrease in sphingomyelin concentration (P<0.01); however, there was no change in phosphatidylethanolamine concentration. Before detecting increased apoptosis in choline-deficient cells, we measured a significant increase in ceramide (218% control) and diacyglycerol (155% control) concentrations. The addition of a cell-permeable ceramide to cells in control medium induced apoptosis; however, adding a cell-permeable diacyglycerol did not induce apoptosis. Caspase is a common mediator of apoptosis, and choline deficiency-induced apoptosis was prevented completely by replacing choline or adding a caspase inhibitor into the medium within 48 h of initial choline deprivation. In those cells rescued by replacing choline at 36 h, the concentrations of phosphatidylcholine, sphingomyelin, ceramide, and diacyglycerol returned to levels of control cells. In those cells rescued by adding a caspase inhibitor at 36 h, the concentrations of sphingomyelin and ceramide returned to control levels, but the concentrations of phosphatidylcholine and diacyglycerol did not return to normal. We propose that availability of dietary factors (choline in this model) can modulate apoptosis. Mechanisms that we identify using this model may help us to explain why dietary choline influences brain development.  相似文献   

3.
While ceramide has emerged as a potent signal transducer, inconsistencies in the kinetics of ceramide generation, or its absence, in response to stimuli have led to confusion and skepticism as to its potential role in apoptosis or proliferation. Here we show that in U937 and HL60 myeloid leukemia cells and in normal skin fibroblasts, cell-permeant ceramides can trigger neutral sphingomyelinase activation, sphingomyelin hydrolysis, and endogenous ceramide generation regardless of Bcl2 overexpression. These observations identify neutral sphingomyelinase as a novel target for ceramide and show that this positive feedback mechanism is responsible for signal propagation, as exemplified by mitogen-activated protein kinase activation in daunorubicin-treated cells. This study provides insight into a fundamental process of cell biology. Indeed, such a sustained ceramide-mediated signal throughout the apoptotic process would ensure self-destruction, perhaps by overriding evolutionary conserved primal cell survival mechanisms.  相似文献   

4.
The Fas receptor is one of a number of important physiological inducers of programmed cell death (apoptosis). Current models for regulation of this process involve rapid conversion of sphingomyelin to ceramide by cellular sphingomyelinases. Induced changes in cellular levels of such sphingosine-based ceramides are normally extrapolated from measurements of sphingomyelinase activity or following their conversion to ceramide phosphate by treatment of cellular lipid extracts with bacterial diacylglycerol kinase (DAGK). To allow direct study of cellular sphingosine- and sphinganine-based ceramide levels, we developed a mass spectrometric technique capable of determining inducible changes in both overall ceramide levels and species distribution in cellular lipid preparations. Contrary to current models, we detected no changes in cellular ceramide levels up to 2 hr poststimulation of Jurkat T cells with an anti-Fas IgM, although this treatment did induce apoptosis. We also determined in the same system that, when utilizing the DAGK assay, increased phosphorylation of substrates that comigrated with ceramide standards was apparent but that this effect was due to an enhancement of DAGK activity rather than increases in levels of cellular ceramides as substrates per se. Thus, the first direct measurement of ceramides present in cells undergoing apoptosis indicates that, insofar as it can be measured, the induction of apoptosis does not involve the generation of sphingosine-based ceramides, contrary to many published accounts.  相似文献   

5.
The prototype of a new class of antiproliferative phospholipid analogs, hexadecylphosphocholine (HePC), has been shown to inhibit tumor growth and is currently used for the treatment of cutaneous metastases of mammary carcinomas. Although several cellular targets of HePC, e.g. protein kinase C and CTP:phosphocholine cytidylyltransferase, have been proposed, the mechanisms of HePC-induced anticancer activity are still unclear. Considering that the antiproliferative effect of HePC correlates with inhibition of phosphatidylcholine biosynthesis, which is tightly coupled to sphingomyelin biosynthesis, we tested the hypothesis that treatment of cells with the anticancer drug leads to increased cellular ceramide and subsequently to apoptotic cell death. In the present study, we showed that 25 micromol/liter HePC induced apoptosis. In further experiments, we demonstrated that HePC inhibited the incorporation of radiolabeled choline into phosphatidylcholine and at a later time point into sphingomyelin. This was confirmed by metabolic labeling of the lipid backbone using radiolabeled serine, and it was shown that HePC decreased the incorporation of serine into sphingomyelin by 35% and simultaneously increased the incorporation of serine into ceramide by 70%. Determination of the amount of ceramide revealed an increase of 53% in HePC-treated cells compared with controls. In accordance with the hypothesis that elevated ceramide levels may be the missing link between the metabolic effects of HePC and its proapoptotic properties, HePC-induced apoptosis was blocked by fumonisin B1, an inhibitor of ceramide synthesis. Furthermore, we found that membrane-permeable ceramides additively increased the apoptotic effect of HePC.  相似文献   

6.
The present study underlines the importance of reactive oxygen species in cytokine-mediated degradation of sphingomyelin (SM) to ceramide. Treatment of rat primary astrocytes with tumor necrosis factor-alpha (TNF-alpha) or interleukin-1beta led to marked alteration in cellular redox (decrease in intracellular GSH) and rapid degradation of SM to ceramide. Interestingly, pretreatment of astrocytes with N-acetylcysteine (NAC), an antioxidant and efficient thiol source for glutathione, prevented cytokine-induced decrease in GSH and degradation of sphingomyelin to ceramide, whereas treatment of astrocytes with diamide, a thiol-depleting agent, alone caused degradation of SM to ceramide. Moreover, potent activation of SM hydrolysis and ceramide generation were observed by direct addition of an oxidant like hydrogen peroxide or a prooxidant like aminotriazole. Similar to NAC, pyrrolidinedithiocarbamate, another antioxidant, was also found to be a potent inhibitor of cytokine-induced degradation of SM to ceramide indicating that cytokine-induced hydrolysis of sphingomyelin is redox-sensitive. Besides astrocytes, NAC also blocked cytokine-mediated ceramide production in rat primary oligodendrocytes, microglia, and C6 glial cells. Inhibition of TNF-alpha- and diamide-mediated depletion of GSH, elevation of ceramide level, and DNA fragmentation (apoptosis) in primary oligodendrocytes by NAC, and observed depletion of GSH, elevation of ceramide level, and apoptosis in banked human brains from patients with neuroinflammatory diseases (e.g. X-adrenoleukodystrophy and multiple sclerosis) suggest that the intracellular level of GSH may play a critical role in the regulation of cytokine-induced generation of ceramide leading to apoptosis of brain cells in these diseases.  相似文献   

7.
Oxidized low density lipoproteins (oxLDL) are thought to play a central role in the development of atherosclerosis. Toxic concentrations of mildly oxidized LDL elicit massive apoptosis of endothelial cells (Escargueil-Blanc, I., Meilhac, O., Pieraggi, M. T. , Arnal J. F., Salvayre, R., Nègre-Salvayre, A. (1997) Arterioscler. Thromb. Vasc. Biol. 17, 331-339). Since the lipid mediator ceramide emerged as a potent inducer of apoptosis, we aimed at investigating the occurrence of ceramide formation and its potential role in oxLDL-induced apoptosis. In ECV-304 endothelial cells, toxic concentrations of oxLDL triggered an early activation of the sphingomyelin-ceramide pathway, as shown by both sphingomyelin hydrolysis and ceramide formation. N-Tosyl-L-phenylalanyl chloromethyl ketone (TPCK) and dichloroisocoumarin (DCIC), two serine-protease inhibitors (serpins), blocked the oxLDL-induced ceramide generation but, unexpectedly, did not inhibit the oxLDL-induced apoptosis. Conversely, treatment of endothelial cells by bacterial sphingomyelinase, under conditions effectively generating ceramide, did not induce apoptosis. In contrast, short-chain permeant C2- and C6-ceramides elicited apoptosis of ECV-304. However, the mechanisms of apoptosis triggered by C2-ceramide and by oxLDL were (at least in part) different, because C2-ceramide-induced apoptosis was calcium-independent, whereas oxLDL-induced apoptosis was calcium-dependent. In conclusion, it is suggested that oxLDL-induced apoptosis is calcium-dependent but independent of the activation of the sphingomyelin-ceramide pathway and that the toxic effect of short chain permeant ceramides is calcium-independent and does not mimic the effect of natural ceramides induced by oxLDL.  相似文献   

8.
Increased sensitivity to ionizing radiation has been shown to be due to defects in double-strand break repair and mutations in the proteins that detect DNA damage. However, it is now recognized that the cellular radiation response is complex and that radioresistance/radiosensitivity may also be regulated at different levels in the radiation signal transduction pathway. Here, we describe a direct relationship between resistance to radiation-induced apoptosis and defective ceramide signaling. Radiation sensitivity in human tumor cells correlated with the immediate accumulation of the second messenger ceramide. In the BL30A Burkitt's lymphoma line, ceramide increased 4-fold by 10 min postirradiation (10 Gy), and in the moderately sensitive HL-60 leukemia cells, ceramide accumulated 2.5-fold above basal levels. In contrast, in all radioresistant tumor cells examined, including several Burkitt's lymphoma lines (BL30K, BL29, and BL36) and the MO59K glioma cell line, ceramide did not accumulate postirradiation. The ability to abrogate ceramide production by pretreatment with the tumor promoter, 12-O-tetradecanoylphorbol 13-acetate, conferred resistance to radiation-induced apoptosis in the sensitive BL30A cells. An isogenic subline of BL30A, BL30K, was resistant to both C8-ceramide (20 microM) and ionizing radiation-induced apoptosis. Bypassing the block in radiation-induced ceramide production by the addition of exogenous ceramide was not sufficient to induce apoptosis; this suggests the existence of a second ceramide-associated signaling defect in these radioresistant cells that confers resistance to ceramide-induced apoptosis. Thus, these results provide compelling evidence that ceramide is an essential mediator of radiation-induced apoptosis and that defective ceramide signaling confers an apoptosis-resistant phenotype in tumor cells.  相似文献   

9.
Mammalian systems respond to environmental stress by either adapting or undergoing programmed cell death. While there is general agreement that the caspase family of proteases serve as the effectors of the apoptotic death response, the signaling apparatus involved in the decision to activate the caspase system is less clear. In the past few years, the sphingomyelin and c-Jun Kinase (JNK)/Stress-activated Protein Kinase (SAPK) pathways have been linked to the death response in many cellular systems. These signaling systems are found throughout the animal kingdom, and ceramide signaling is conserved through yeast. Since yeast do not undergo apoptosis, the sphingomyelin pathway appears evolutionarily older than the caspase-mediated death programs. While recent reviews by several groups have broadly surveyed ceramide signaling in apoptosis, this paper examines the role of sphingomyelinases and the JNK/SAPK pathway in coordinate signaling of apoptosis.  相似文献   

10.
Hydrogen peroxide (H2O2) is considered to be a mediator of apoptotic cell death but the mechanism by which it induces apoptosis is unclear. Here, we show that cells undergoing apoptosis from exposure to H2O2 display a significant decrease in intracellular concentration of superoxide (O2-) which is associated with a reduction of the intracellular milieu, as measured by an increase in the GSH/GSSG ratio and a decrease in intracellular pH. The notion that a decrease in intracellular O2- concentration triggers apoptosis is supported by the observation that H2O2-mediated apoptosis could be retarded in cells in which the intracellular O2- concentration is maintained at or above the cellular baseline level by inhibition of the major O2- scavenger superoxide dismutase (Cu/Zn SOD). Taken together, our observations indicate that a decrease in the intracellular O2- concentration, reduction and acidification of the intracellular milieu constitute a signal for H2O2-mediated apoptosis, thereby inducing a reductive as opposed to an oxidative stress.  相似文献   

11.
To address the role of protein kinase C (PKC) in the regulation of ceramide production, we evaluated the impact of the PKC activators 12-O-tetradecanoylphorbol-13-acetate and phosphatidylserine on the apoptotic signaling pathway triggered by the chemotherapeutic drug daunorubicin. Treatment of U937 and HL-60 cells with 0.5-1 microM daunorubicin induced a greater than 30% activation of neutral sphingomyelinase activity within 4-10 min with concomitant sphingomyelin hydrolysis and ceramide generation. Activation of PKC by 12-O-tetradecanoylphorbol-13-acetate and phosphatidylserine inhibited daunorubicin-induced neutral sphingomyelinase activation, sphingomyelin hydrolysis, ceramide generation, and apoptosis. The apoptotic response could be restored by the addition of 25 microM cell-permeant C6-ceramide. In conclusion, PKC emerges as a potentially critical negative regulator of the anthracycline-activated sphingomyelin-ceramide apoptotic pathway.  相似文献   

12.
Sphingolipids (SLs) are important structural and regulatory components of neuronal plasma membranes. Previous studies using fumonisin B1, an inhibitor of the synthesis of ceramide, the precursor of all SLs, demonstrated that ceramide synthesis is required to sustain axonal growth in hippocampal neurons (; ) and dendritic growth in cerebellar Purkinje cells (). We now show that ceramide plays distinct roles at different stages of neuronal development. (1) During axon growth, ceramide must be metabolized to glucosylceramide (GlcCer) to sustain growth. Thus, whereas D-erythro-ceramide, which is metabolized to GlcCer, is able to antagonize the disruptive effects of fumonisin B1 on axon growth, L-threo-ceramide, which is not metabolized to GlcCer, is ineffective. (2) The formation of minor processes from lamellipodia can be stimulated by incubation with short-acyl chain analogs of ceramide that are active in ceramide-mediated signaling pathways, or by generation of endogenous ceramide by incubation with sphingomyelinase. However, GlcCer synthesis is not required for this initial stage of neuronal development. (3) During minor process formation and during axon growth, incubation with high concentrations of ceramide or sphingomyelinase, but not dihydroceramide, induces apoptosis. Together, these observations are consistent with the possibility that minor process formation and apoptosis can be regulated by ceramide-dependent signaling pathways and that the decision whether to enter these diametrically opposed pathways depends on intracellular ceramide concentrations. In contrast, axonal growth requires the synthesis of GlcCer from ceramide, perhaps to support an intracellular transport pathway.  相似文献   

13.
The sphingomyelin pathway has been implicated in mediating the effect of several extracellular agents leading to important biochemical and cellular changes. The aim of this investigation is to study interleukin-1 beta (IL-1 beta) signaling in oligodendrocytes. For this purpose, the CG4 oligodendrocyte cells were differentiated and incubated with IL-1 beta. This treatment induced a time- and dose-dependent increase of the endocellular ceramide. To mimic the effect of the elevation of endogenous ceramide, the CG4 cells were treated with the ceramide analogue C2-ceramide. Cell survival, measured with the MTT assay, showed that, by increasing the concentration of ceramide, up to 40% of CG4 cells were dying within 6 h, similar data were obtained with the primary differentiated oligodendrocytes. Condensation of chromatin, nuclear fragmentation, and formation of apoptotic bodies indicated that apoptosis was the cause of death. Surprisingly, long-term exposure (72 h) to increasing concentrations of IL-1 beta, which increases intracellular ceramide, did not induce oligodendroglial cell death. These results show that an increase of intracellular ceramide is not sufficient to induce apoptosis in oligodendrocytes and that IL-1 beta signaling through the ceramide pathway in these cells can mediate functions other than programmed cell death.  相似文献   

14.
Oxidized low density lipoprotein (oxLDL) induces apoptosis in vascular cells. To elucidate the mechanisms involved in this apoptosis, we studied the apoptosis-inducing activity in lipid fractions of oxLDL and the roles of two common mechanisms, ceramide generation and the activation of caspases, in apoptosis in human umbilical vein endothelial cells treated with oxLDL. We also studied the effects of antioxidants and cholesterol. oxLDL induced endothelial apoptosis in a time- and dose-dependent fashion. Apoptosis-inducing activity was recovered in the neutral lipid fraction of oxLDL. Various oxysterols in this fraction induced endothelial apoptosis. Neither the phospholipid fraction nor its component lysophosphatidylcholine induced apoptosis. oxLDL induced ceramide accumulation temporarily at 15 min in a dose-dependent fashion. Two inhibitors of acid sphinogomyelinase inhibited both the increase in ceramide and the apoptosis induced by oxLDL. Furthermore, a membrane-permeable ceramide (C2-ceramide) induced endothelial apoptosis. These findings demonstrated that ceramide generation by acid sphingomyelinase is indispensable for the endothelial apoptosis induced by oxLDL. Inhibitors of both caspase-1 and caspase-3 inhibited the apoptosis, suggesting that oxLDL induced apoptosis by activating these cysteine proteases. The antioxidants butylated hydroxytoluene and superoxide dismutase but not catalase inhibited the apoptosis induced by oxLDL or 25-hydroxycholesterol. This suggests not only that superoxide plays an important role but also that a critical interaction between oxLDL and the cell takes place on the outer surface of the membrane, because superoxide dismutase is not membrane-permeable. Exogenous cholesterol also inhibited the apoptosis. Our study demonstrated that neutral lipids in oxLDL induce endothelial apoptosis by activating membrane sphingomyelinase in a superoxide-dependent manner, as well as by activating caspases.  相似文献   

15.
Activation of c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) has been implicated in the induction of apoptosis in a variety of systems [1] [2] [3] [4] [5] [6] [7] [8]. BAF3 cells are pre-B cells that undergo apoptosis following IL-3 withdrawal or ceramide treatment [9] [10]. JNK/SAPK in BAF3 cells is stimulated by ceramide and also during cell proliferation in response to IL-3 [11], but its role in the apoptotic response is not clear. We have devised a method of selectively inhibiting JNK/SAPK activity using a dual-specificity threonine/tyrosine phosphatase, M3/6. Expression of this phosphatase in BAF3 cells prevented ceramide stimulation of JNK/SAPK activity but did not affect apoptosis following IL-3 withdrawal or ceramide treatment. IL-3-stimulated proliferation of BAF3 cells expressing the phosphatase was, however, inhibited. Hence JNK/SAPK activation is likely to be involved in the proliferative response of these cells but is not required for apoptosis. Selective ablation by dual-specificity phosphatases should be a general method for determining the functions of specific mitogen-activated kinase pathways.  相似文献   

16.
Although ceramide signaling pathways have been implicated in cell death, neither their role in hepatocellular death nor the cellular mechanisms mediating ceramide-induced cell death are known. The mitochondrial membrane permeability transition (MMPT) has been proposed as a common final pathway in cell death. Thus the aims of our study were to determine if ceramides cause hepatocellular death by necrosis and not apoptosis as confirmed by morphology and the absence of internucleosomal DNA cleavage. Ceramide-mediated hepatocyte necrosis was acyl chain-length, concentration, and time-dependent. Ceramides induced cell necrosis was associated with adenosine triphosphate (ATP) depletion and mitochondrial depolarization suggesting that ceramides caused mitochondrial dysfunction. In isolated mitochondria, ceramides induced the cyclosporine A-sensitive MMPT in an acyl chain-length and concentration dependent manner. Ceramide toxicity was specific as the less potent dihydro form did not induce cell necrosis, significant ATP depletion, mitochondrial depolarization nor the MMPT. In conclusion, ceramide induced cell death is acyl-chain length dependent and mediated by the MMPT. These data show for the first time that ceramide acts as a mediator of hepatocyte necrosis by causing mitochondrial failure.  相似文献   

17.
We investigated the ability of N-octanoyl-sphingosine (C8-Cer) stereoisomers, N-octanoyl-DL-erythro-dihydrosphingosine (DL-e-DHC8-Cer), and a new ceramide derivative, N-octyl-D-erythro-sphingosine (D-e-C8-Ceramine), to induce apoptosis in U937 cells. We found the C8-Cer stereoisomers to be stereospecific with the D- and L-threo stereoisomers being severalfold more potent than the erythro in inducing nucleosomal fragmentation. The order of potency was: D-t-C8-Cer = L-t-C8-Cer > L-e-C8-Cer > D-e-C8-Cer > DL-e-DHC8-Cer. The importance of the carbonyl group in apoptosis was investigated by using a new ceramide derivative, D-e-C8-Ceramine, in which the carbonyl group was replaced by a methylene group. The carbonyl group was not necessary for triggering apoptosis. In fact, replacement of the carbonyl group decreased substantially the time required for cells to die, with maximum DNA fragmentation occurring at 6 h as opposed to the 18 h required by D-e-C8-Cer. To explore possible mechanisms by which these compounds trigger the apoptotic pathway, we tested their ability to increase the endogenous levels of cellular ceramide and to differentially activate a ceramide-activated protein kinase (CAPK). While the potent DNA fragmentation-inducing compounds D-e-C8-Ceramine and L-t-C8-Cer failed to increase the cellular ceramide levels, D-e-C8-Cer, D-t-C8-Cer and D-e-C8-Ceramine activated the CAPK equally. These studies suggest that the DNA fragmentation-inducing ability of the threo stereoisomers and D-e-C8-Ceramine cannot be attributed either to an increase in the activity of CAPK, or, as illustrated by D-e-C8-Ceramine and L-t-C8-Cer, to the differential elevation of endogenous ceramide. The phosphatase inhibitor okadaic acid failed to protect U937 cells from apoptosis induced by D-e-C8-Cer.  相似文献   

18.
We report here that anticancer drugs such as doxorubicin lead to induction of the CD95 (APO-1/Fas) system of apoptosis and the cellular stress pathway which includes JNK/SAPKs. Ceramide, which accumulates in response to different types of cellular stress such as chemo- and radiotherapy, strongly induced expression of CD95-L, cleavage of caspases and apoptosis. Antisense CD95-L as well as dominant-negative FADD inhibited ceramide- and cellular stress-induced apoptosis. Fibroblasts from type A Niemann-Pick patients (NPA), genetically deficient in ceramide synthesis, failed to up-regulate CD95-L expression and to undergo apoptosis after gamma-irradiation or doxorubicin treatment. In contrast, JNK/SAPK activity was still inducible by doxorubicin in the NPA cells, suggesting that activation of JNK/SAPKs alone is not sufficient for induction of the CD95 system and apoptosis. CD95-L expression and apoptosis in NPA fibroblasts were restorable by exogenously added ceramide. In addition, NPA fibroblasts undergo apoptosis after triggering of CD95 with an agonistic antibody. These data demonstrate that ceramide links cellular stress responses induced by gamma-irradiation or anticancer drugs to the CD95 pathway of apoptosis.  相似文献   

19.
In apoptosis induced by Reaper in Drosophila, as well as in a number of other systems, it has been suggested that the increased synthesis of ceramide might be a consequence of the activation of the caspase/ICE (Interleukin-1beta converting enzyme) protease pathway involved in cell death, implying that ceramide generation might often be the result rather than the cause of apoptosis. WEHI 231 B cells have previously been shown to undergo apoptosis following exposure to exogenous ceramide and to produce increased amounts of ceramide in response to anti-IgM crosslinking. We show here that in WEHI 231 cells a peptide inhibitor of caspase activity blocks cell death in response to both anti-IgM and exogenous ceramide. However, the induction of ceramide synthesis by WEHI 231 cells in response to anti-IgM crosslinking is not blocked by this peptide. These results indicate that antigen receptor induced ceramide generation in WEHI 231 cells does not require caspase activation, and support the view that ceramide generation in immature B cells may be the cause rather than the consequence of activation of the caspase dependent death pathway.  相似文献   

20.
Studies on the roles of sphingolipids (SLs) and glycosphingolipids (GSLs) at distinct stages of neuronal development have been performed using primary cultures of hippocampal neurons, which are unique among neuronal cultures inasmuch as they develop by a well-characterized and stereotypic sequence of events that gives rise to fully differentiated axons and dendrites. Our data demonstrate that SLs and GSLs play at least three distinct roles in regulating neuronal development, namely: (i) ceramide enhances the formation of minor neuronal processes from lamellipodia and the subsequent stage of axonogenesis; (ii) glucosylceramide synthesis, but not the synthesis of higher-order GSLs, is required for normal axon growth and for accelerated axonal growth upon stimulation by growth factors; and (iii) at both of these stages, ceramide at high concentrations can induce apoptotic cell death. Together, these observations are consistent with the possibility that minor process formation and apoptosis are regulated by ceramide-dependent signaling pathways, whereas axonal growth requires glucosylceramide synthesis, perhaps to support an intracellular transport pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号