首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Phase equilibria of the La2O3–SrO–CuO system have been determined at 950°C at 30 kbar (3 GPa). Stable phases at the apexes of the ternary phase diagram are CuO, La2O3, and SrO. Stable intermediate phases are La2, CuO4 and La2Cu2O5 in the LaO1.5–CuO binary and Sr2CuO3, SrCuO2, and Sr14Cu24O41 in the CuO–SrO binary. The La2– x Sr x -CuO4–δ solid solution is stable for 0.00 is ≤ x ≤ 1.29, the La2– x Sr1+ x Cu2O6+δ solid solution is stable for 0.03 ≤ x ≤0.20, the La2– x Sr x Cu2O5–δ solid solution is stable for 0.00 ≤ x ≤1.08, and the La x Sr14– x Cu24O41 solid solution is stable for 0.00 ≤ x ≤ 6.15. The 30 kbar phase diagram differs from the 1 atm (0.1 MPa) and 10 kbar (1 GPa) results principally in the absence of La1– x Sr2+ x Cu2O5.5+δ as a stable phase and the extended range of the La2– x Sr x Cu2O5–δ solid solution at 30 kbar.  相似文献   

2.
Subsolidus phase relations in the La2O3–BaO–CuO system were studied at 950°C. Three previously reported binary compounds exist (La2CuO4, BaLa2O4, and BaCuO2) and five previously reported ternary phases occur (La2-xBaxCuO4-(x/2)+δ, La4-2xBa2+2xCu2-xO10-2x, La2-xBa1+xCu2O6-(x-2), La3-xBa3+xCu6O14±δ, and La4BaCu5O13+δ). Of the seven phases in the diagram, all but BaLa2O4, BaCuO2, and La4BaCu5O13+δ were shown to exhibit significant ranges of solubility. The diagram is important in that both >30 K (La2-xBaxCuO4-(x/2)+δ) and >90 K (La3-xBa3+xCu6O14+δ, x=1) superconductors occur.  相似文献   

3.
The phase diagram for the CuO-rich part of the La2O3─CuO join was redetermined. La2Cu2O5 was found to have a lower limit of stability at 1002°± 5°C and an incongruent melting temperature of ∼1035°C. LagCu7O19 had both a lower (1012°± 5°C) and an upper (1027°± 5°C) limit of stability. Subsolidus phase relations were studied in the La2O3─CuO─CaO system at 1000°, 1020°, and 1050°C in air. Two ternary phases, La1.9Ca1.1Cu2O5.9 and LaCa2Cu3O8.6, were stable at these temperatures, with three binary phases, Ca2CuO3, CaCu2O3, and La2CuO4. La2Cu2O5 and La8Cu7O19 were stable only at 1020°C, and did not support solid-solution formation.  相似文献   

4.
The phase relations in the pseudo-ternary system La2O3–SrO–Fe2O3 have been investigated in air. Isothermal sections at 1100° and 1300°C are presented based on X-ray diffraction and thermal analysis of annealed samples. Extended solid solubility was observed for the compounds Sr n +1− v La v Fe n O3 n +1−δ ( n =1, 2, 3, and ∞) and Sr1− x La x Fe12O19, while only limited solubility of La in Sr4− z La z Fe6O13±δ was observed. At high Fe2O3 content, a liquid with low La2O3 content was stable at 1300°C.  相似文献   

5.
Samples of LaMn1-xCuxO3-y in the range 0≤x≤0.8 were prepared from freeze-dried solutions of the nitrates. Samples with x≤0.6 were single-phase perovskites. At higher values of x , the samples contained La2CuO4 and CuO as well as the perovskite phase. Samples of LaMn1−x,Cux,O3−y supported on ceramic monoliths or when mixed with powdered A12O3 exhibit catalytic activity for the oxidation of CO. Greatest activity is shown for 0.4≤x≤0.7. Although the catalysts are severely poisoned by SO2, 2% H2O in the gas stream causes only slight deactivation. Activities of other oxide catalysts were also measured and compared. Rate constants per unit surface area at 200° to 400°C follow the order Co3O4>Pt>LaMn1−xCuxO3−y (0.4≤x≤0.7)>copper chromite>La1−xSrx,MnO3≤ other substituted LaMnO3 materials, CuO, or La2CuO4. The perovskite catalyst is more stable than Co3O4 or copper chromite when heated in 10% H2+ 90% N2.  相似文献   

6.
Crystal chemistry and subsolidus phase equilibrium studies of the Ba-Nd-Cu-O system near the CuO and Nd2O3 corners have been carried cut at 950°C in air. Two solid-solution series have been identified in the Ba-Nd-Cu-O system. The first series involves the high- T c superconductor phase, and has the formula Ba2–xNd1+xCu3O6+z, where × < ≅ 0.7. At the ideal compound stoichiometry of Ba2NdCu3O6+z, the transformation from the high- T c orthorhombic to tetragonal phase occurs at 550°–575°C in air. This temperature varies as a function of composition, and at x ≅ 0.2 to 0.3 it occurs at 950°C. The second solid solution is the non-superconducting "brown phase" represented by Ba2+2x-Nd4–2xCu2–xO10–2z 0 ≤ x ≤ 0.1. Preliminary phase diagrams of the BaO–Nd2O3 and Nd2O3–CuOx systems are also presented. Standard X-ray diffraction patterns of BaNd2–CuO5 and (Nd1.9Ca0.1)CuO4–z are provided.  相似文献   

7.
Phase composition and compatibilites at 930° to 950°C were determined for the system Eu2O3–BaO–CuO in air. The binary compound Eu2CuO4 dissolves Ba to the extent 0 x 0.02 in Eu2-xBaxCuO4, whereas the other binary compounds, Eu2BaO4 and BaCuO2, do not exhibit solid solubility. Three ternary compounds were obtained, Eu2BaCuO5 and two solid solution phases. The first contains the 90 K '123' superconductor and has solubility limits represented by Eu1+xBa2-xCu3O7±y, where 0 x 0.5. The second has a solubility limit represented as Eu1+xBa8-xCu4Oy, where 0 x 0.44. The limited solid solution range of this phase provides insight concerning the probable solid solution range of the analogous phase in the Y2O3-BaO-CuO system.  相似文献   

8.
Compositions of La1- x Ba x CuO3, where x ranges from 0.0 to 0.5, were fired in air, oxygen-enriched air, and oxygen. Studies show that BaO cannot make a solid solution with LaCuO3 without changing the basic structure. The resulting phases, in all attempts, were the binary compounds La2CuO4, La1- x Ba x CuO3-δ ( x = 0.2 to 0.5), or their mixtures. All samples showed metallic conductivity. Extra oxygen in the reaction atmosphere appeared to encourage the formation of the LaCuO3-based phases of La1- x Ba x CuO3-δ ( x = 0.2 or 0.5). We provide a defect-chemical and thermodynamical explanation for this observation.  相似文献   

9.
Equimolar powder mixtures and multilayer pellets of single-phase Sr-doped lanthanum manganite perovskite materials Lay-xSrxMnO3 with La content y = 1 and 0.95 and Sr content 0 ≤ x ≤ 0.5 were annealed in air with 8 mol% Y2O3-ZrO2 at 1470 K, up to 400 h and at 1670 K. up to 200 h. X-ray diffraction and electron probe microanalysis confirmed the formation of La2Zr2O7 or SrZrO3 depending on the composition of the perovskites. No reaction products could be detected for La0.95-xSr xMnO3 with 0.2 ≤ x ≤ 0.4 after annealing for 400 h at 1470 K, and for the perovskite La0.65Sr0.3MnO3 even after annealing for 200 h at 1670 K. The results demonstrate the improved chemical compatibility of La-deficient perovskites against reaction with zirconia and can provide a basis for the selection of a sufficiently chemically stable material for the air electrode of solid oxide fuel cells.  相似文献   

10.
The response of ceramic superconductors and ceramic composites to compressive stresses at high temperatures has been examined. Monolithic YBa2Cu3O7-δ and composite YBa2Cu3O76/Ag were tested at constant true strain rates from 10-6 to 10-3 s-1 at temperatures from 800° to 950°C. Fine-grained monolithic YBa2Cu3O7-δ appears to have a regime of superplastic deformation between temperatures of 850° and 950°C at strain rates from 10-6 to 10-4 S-1. The addition of 20 vol% Ag to a coarser-grained material enhances the ductility of the ceramic and lowers the flow stress by a factor of 3 to 10. However, there is no evidence of superplasticity in the composite material in the range of temperature and strain rate where it was tested.  相似文献   

11.
La1- x A' x Fe0.8Co0.2O3-δ (A'= Ca, Sr, Ba) perovskite powders were synthesized to attain the desired properties of high O2 flux and stability under reducing conditions. Steady-state oxygen permeation rates for La1- x A' x Fe0.8-Co0.2O3-δ perovskite membranes in nonreacting experiments with air on one side and helium on the other side of the membrane were in the order A' x = Ba0.8 > Ba0.6 > Ca0.6 > Sr0.6. Partial oxidation of methane to syngas (CO + H2) was performed in a dense La0.2Ba0.8Fe0.8Co0.2O3-δ membrane reactor at 850°C in which oxygen was separated from air and simultaneously fed into the methane stream. The reducing atmosphere affected the membrane reaction-side surface while barium enrichment occurred on the air-side surface. Oxygen continuously transported from the air side appeared to stabilize the membrane interior, and the reactor was operated for up to 850 h.  相似文献   

12.
Ceramics of the melilite-type compound La1+ x Sr1− x Ga3O7−δ were prepared by conventional ceramic processing. Samples prepared represented the entire homogeneity region of the phase (i.e., x =−0.15 to 0.60). Electrochemical characterization under variable temperature and atmospheric conditions in the vicinity of air entailed four-point direct-current conductivity measurements and electromotive force measurements. La1+ x Sr1− x Ga3O7−δ samples exhibited a p -type behavior with generally increased conductivity with increased substitution of lanthanum for strontium, which reached a saturation value of ∼10−1 S·cm−1 at 950°C.  相似文献   

13.
Bi2Sr2Ca2Cu2O8±δ-type compound thick films were exposed to oxygen-argon-gas mixtures (1% to 20% oxygen gas) at elevated pressures (up to 207 MPa) and temperatures (500° to 940°C) for times ranging from 5 to 96 h. At a sufficiently high oxygen fugacity and temperature, Bi2Sr2Ca1Cu2O8±δ decomposed via a solid-state reaction. Room-temperature X-ray diffractometry and electron probe microanalysis of decomposed films revealed the presence of Bi2(Sr,Ca)2-Cu1O6±θ ro-type compound, Bi2Sr2,Ca1O8±δ-type compound, and CuO. Bi2Sr2Ca1Cu2O8±δ decomposition was accompanied by a modest weight gain, which was consistent with an oxidation reaction. The solid-state decomposition reaction could be reversed by heat treatment of decomposed films at 860°C in pure, flowing oxygen at ambient pressure.  相似文献   

14.
The electrical conductivity and Seebeck coefficients of La1-xSr x FeO3 ( x =0.1, 0.25) were measured as a function of oxygen partial pressure, PO2, at T =900° to 1300°C. The electrical conduction was p type in the higher PO2 range, and n type in the lower P O2 range. The Seebeck coefficient indicated that the conduction was due to electron hopping between Fe×Fe and FeFe, in the higher PO2 range and electron hopping between Fe'Fe and Fe×Fe in the lower range. The carrier concentrations were calculated from the values of electrical conductivity and Seebeck coefficient. From the P O2 dependences of the carrier concentrations, the defect structure of La1-xSr x FeO3 was determined. It was found that the electrical properties can be described by considering the imperfections SrLa, Vo , FeFe, and Fe'Fe.  相似文献   

15.
The stability of the (Bi,Pb)2Sr2Ca2Cu3O10±δ-type compound has been evaluated under conditions of elevated temperature (500°-860°C) and elevated oxygen fugacity (i.e., in O2/Ar gas mixtures containing ≤120% O2, at total pressures of 5207 MPa). At sufficiently high oxygen fugacities and temperatures, the (Bi,Pb)2Sr2Ca2Cu3O10±δ-type compound transformed into a mixture of a strontium-rich (Bi,Pb)1-(Sr,Ca,Cu)2Oy-type compound, a calcium-rich (Bi,Pb)2-(Sr,Ca,Cu)2Oy-type compound, CuO, and a small amount of (Sr,Ca)O. The decomposition of the (Bi,Pb)2Sr2Ca2-Cu3O10±δ-type compound was accompanied by a 2%-3% weight gain, which was consistent with an oxidation reaction. The conditions of oxygen fugacity and temperature leading to decomposition, and the resulting decomposition products, are compared for the (Bi,Pb)2Sr2Ca2Cu2O10±δ-type and Bi2Sr2Ca1Cu2O8±Ψ-type compounds.  相似文献   

16.
The ternary system SrO-CeO2-TiO2 was investigated using X-ray diffractometry. The formation of a new compound, Sr2Ce2Ti5O16, was established, and its compatibilities with SrO, SrCeO3, and SrTiO3 were studied. The results revealed the existence of a series of compounds Sr6–12xCe6xTi5O16 and solid solutions Sr2+nCe2Ti5+nO16+3n ( n ≤ 6).  相似文献   

17.
(La0.8Sr0.2)0.98Fe0.98Cu0.02O3−δ can be sintered directly onto YSZ (without the need for a protective ceria interlayer). Though subject to an extended "burn-in" period (∼200 h), anode-supported YSZ cells using the Cu-doped LSF achieve power densities ranging from 1.3 to 1.7 W/cm2 at 750°C and 0.7 V. These cells have also demonstrated 500 h of stable performance. The results are somewhat surprising given that XRD indicates an interaction between (La0.8Sr0.2)0.98Fe0.98-Cu0.02O3−δ and YSZ resulting in the formation of strontium zirconate and/or monoclinic zirconia. The amount and type of reaction product was found to be dependent on cathode and electrolyte powder precalcination temperatures.  相似文献   

18.
The influence of Nd2O3 doping on the reaction process and sintering behavior of BaCeO3 is investigated. Formation of BaCeO3 is initiated at 800°C and completed at 1000°C. When Nd2O3 is added to the starting materials, the formation of BaCe1–xNdxO3–δ is delayed and the temperature for complete reaction is increased to 1100°C. Only a BaCe1-xNdxO3–δ solid solution with an orthorhombic crystal structure is present in the specimens for x ≤ 0.1. A secondary phase rich in Ce and Nd is formed within grains and at grain boundaries, when the Nd2O3 content is greater than the solubility limit (x ≥ 0.2). Pure BaCeO3 is difficult to sinter, even at 1500°C, and only a porous microstructure could be obtained. However, doping BaCeO3 with Nd2O3 markedly enhances its sinterability. The enhancement of the sinterability of Nd2O3-doped specimens at x ≤ 0.1 is attributed to the increase in the concentration of oxygen ion vacancies, which increases the diffusion rate. At x ≥ 0.2, the grain size is abnormally coarsened, which is caused by the formation of a liquid phase. While this liquid phase accelerates sintering, its beneficial effect on densification is counteracted by the segregation of the secondary grain-boundary phase which inhibits sintering.  相似文献   

19.
The microstructural and compositional evolution during initial annealing of a superconducting (Bi,Pb)2Sr2Ca2Cu3O10+δ/Ag tape is studied using quantitative transmission electron microscopy. Special attention is devoted to the occurrence of Pb-rich liquids, which are crucial for the Bi2Sr2CaCu2O8+δ to (Bi,Pb)2Sr2Ca2Cu3O10+δ transformation. Ca and/or Pb-rich (Bi,Pb)2Sr2CaCu2O8+δ grains dissolve into a liquid, which reacts with Ca-rich phases to increase the liquid's Ca-content. This leads to (Bi,Pb)2Sr2Ca2Cu3O10+δ formation. Apparently, a Ca/Sr ratio of around 1 is sufficient to keep (Bi,Pb)2Sr2Ca2Cu3O10+δ nucleation going. It is confirmed that Ag particles are transported from the Ag-sheath into the oxide core by the liquid and not by mechanical treatment of the tape.  相似文献   

20.
La1− y Sr y Fe1− x Al x O3−δ perovskites were studied as potential materials for solid-oxide fuel cell (SOFC) cathodes. The phase relations in the LaFeO3–SrFeO3−δ–LaAlO3 system were investigated by X-ray powder diffraction analysis. The defect structure of the La1− y Sr y Fe1− x Al x O3−δ perovskites was investigated by Mössbauer spectroscopy and weight-loss analysis. Relations between the nonstoichiometry and the conductivity of the La1− y Sr y Fe1− x Al x O3−δ perovskites were investigated. The incorporation of aluminum ( x ) into LaFe1− x AlxO3 was found to have no influence on the defect structure but to decrease the conductivity. The incorporation of strontium ( y ) into La1− y Sr y Fe1− x Al x O3−δ promotes the formation of anion vacancies and Fe4+ that lead to higher conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号