首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of our study was to assess whether a supplement of fish oil (FO) and evening primrose oil (EPO) for formula-fed infants was capable of avoiding reductions in erythrocyte docosahexaenoic acid (DHA, 22∶6n−3) and arachidonic acid (AA, 20∶4n−6) associated with standard formula feeding. Healthy, term infants, whose mothers chose to formula feed, were randomized to either a placebo or supplemented formula for their first 30 wk of life. A reference group of beast-fed infants also was enrolled. Erythrocyte fatty acids were measured by capillary gas chromatography on day 5 and in weeks 6, 16, and 30. Supplementation of formula with 0.36% of total fatty acids as DHA resulted in erythrocyte DHA being maintained at or above breast-fed levels for the entire 30-wk study period, and breast feeding (0.21% DHA) resulted in a modest fall in erythrocyte DHA relative to baseline (day 5) values. The level of erythrocyte DHA in placebo formula-fed infants was halved by week 16. AA levels decreased in all infants in the first six weeks, but the levels in breast- and placebo formula-fed infants increased with age and returned to approximate baseline (day 5) values by 16 and 30 wk of age, respectively. Erythrocyte AA in FO+EPO-supplemented infants remained low and below breast- and placebo formula-fed levels. Our data suggest that dietary supplementation with DHA at 0.36% total fatty acids results in erythrocyte DHA levels above those found in breast-fed infants. EPO supplementation was not effective at maintaining erythrocyte AA when given with FO.  相似文献   

2.
This multicenter, parallel group study determined plasma phospholipid and red blood cell (RBC) phosphatidylcholine and phosphatidylethanolamine fatty acids, plasma cholesterol, apo A-1 and B, growth and visual acuity (using the acuity card procedure) in term infants fed from birth to 90 d of age with formula containing palm-olein, high oleic sunflower, coconut and soy oil (22.2% 16∶0, 36.2% 18∶1, 18% 18∶2n−6, 1.9% 18∶3n−3) (n=59) or coconut and soy oil (10.3% 16∶0 18∶6% 18∶1, 34.2% 18∶2n−6, 4.7% 18∶3n−3) (n=57) or breast-fed (n=56) with no formula supplementation. Different centers in North America were included to overcome potential bias due to differences in n−6 or n−3 fatty acids at birth or in breast-fed infants that might occur in a single-site study. Plasma and RBC phospholipid docosahexaenoic acid (DHA, 22∶6n−3) and arachidonic acid (AA, 20∶4n−6), cholesterol and apo B were significantly lower in the formula- than breast-fed infants. There were no differences in looking acuity or growth among the breast-fed and formula-fed infants. No significant relations were found between DHA and looking acuity, or AA and growth within or among any of the infant groups. This study provides no evidence to suggest the formula provided inadequate n−6 or n−3 fatty acids for growth and looking acuity for the first 3 mon after birth.  相似文献   

3.
Devlin AM  Innis SM 《Lipids》1999,34(12):1313-1318
Plasma cholesterol, arachidonic acid (AA, 20∶4n−6), and docosahexaenoic acid (DHA, 22∶6n−3) are higher in breast-fed infants than in infants fed formula without cholesterol, AA, or DHA. This study investigated differences in plasma, hepatic, and bile lipids and phospholipid fatty acids, and expression of hepatic proteins involved in sterol metabolism that result from feeding formula with cholesterol with egg phospholipid to provide AA and DHA. For this study, three groups of piglets were evaluated: piglets fed formula with 0.65 mmol/L cholesterol, the same formula with 0.8% AA and 0.2% DHA from egg phospholipid, and piglets fed sow milk. Piglets fed the formula with phospholipid AA and DHA had higher plasma high density lipoprotein, but not apoprotein (apo) B cholesterol or triglyceride; higher bile acid and phospholipid concentrations in bile; and higher liver and bile phospholipid AA and DHA than piglets fed formula without AA and DHA (P<0.05). Hydroxy methylglutaryl (HMG)-CoA reductase and 7-α-hydroxylase, the rate-limiting enzymes of cholesterol and bile acid synthesis, respectively, and low density lipoprotein receptor mRNA levels were not different between piglets fed formula without and with phospholipid AA and DHA, but HMG-CoA reductase and 7α-hydroxylase mRNA were higher, and plasma apo B containing lipoprotein cholesterol was lower in all piglets fed formula than in piglets fed milk. These studies show that supplementing formula with AA and DHA from egg phospholipid alters bile metabolism by increasing the bile AA and DHA, and bile acid and phospholipid.  相似文献   

4.
Sheila M. Innis 《Lipids》1992,27(11):879-885
Whether docosahexaenoic acid (22∶6n−3) is an essential nutrient for term or preterm infants, or if not, the quantity of dietary linolenic acid (18∶3n−3) needed to support sufficient synthesis of 22∶6n−3 for assimilation in the central nervous system is unknown. Infants fed formulas have lower plasma and red blood cell (RBC) levels of 22∶6n−3 than breast fed infants. No relationship between the intake of 18∶3n−3 in formula (0.8 or 4.5% of fatty acids, 18∶2n−6/18∶3n−3 ratio 35∶1 or 7∶1, respectively) and the infant's RBC 22∶6n−3 was found. Premature infants (<33 wk gestation) also showed a decrease in RBC 22∶6n−3 during feeding with formula containing 18∶3n−3 as the only n−3 fatty acid. However, a marked decrease in plasma and RBC 22∶6n−3 occurred between premature birth and the start of full enteral feeding at 1–2 wk of age. This was not reversed by breast milk or formula feeding. Piglets, which are appropriate for studies of infant lipid metabolism, had decreased brain synaptic plasma membrane, retina and liver 22∶6n−3 and increased 22∶5n−6 when fed formula with 0.8% fatty acids (0.3% of kcal) as 18∶3n−3. Formula with 4.0% fatty acids (1.7% of kcal) as 18∶3n−3 resulted in similar accretion of 22∶6n−3 in the organs compared to milk fed animals. The studies suggest the dietary requirement for 18∶3n−3 in term animals in energy balance exceeds 0.3% diet kcal. Studies in the premature infants suggest 18∶3n−3 may be oxidized rather than desaturated to 22∶6n−3 if energy requirements are not met, and that due to early lipid restriction and later rapid growth, premature infants may have higher dietary n−3 requirements than term infants. Based on a paper presented at the Symposium on Milk Lipids held at the AOCS Annual Meeting, Baltimore, MD, April 1990.  相似文献   

5.
This systematic review and meta-analysis aimed to evaluate the effect of modifying 18-carbon PUFA [18-C PUFA: α-linolenic acid (ALA, 18∶3n−3) and linoleic acid (LA, 18∶2n−6)] in the diets of term and preterm infants on DHA (22∶6n−3) status, growth, and developmental outcomes. Only randomized controlled trials (RCT) involving formula-fed term and preterm infants, in which the 18-C PUFA composition of the formula was changed and growth or developmental outcomes were measured, were included. Differences were presented as control (standard formula) and treatment (18-C PUFA-supplemented formula). Primary analyses for term infants were 4 and 12 mon and for preterm infants 37–42 and 57 wk postmenstrual age. Five RCT involving term infants and three RCT involving preterm infants were included in the systematic review. Infants fed ALA-supplemented formula had significantly higher plasma and erythrocyte phospholipid DHA levels than control infants. There was no effect of ALA supplementation on the growth of preterm infants. In term infants, ALA supplementation was associated with increased weight and length at 12 mon, which was at least 4 mon after the end of dietary intervention. Developmental indices of term infants did not differ between groups. There was a transient improvement in the retinal function of preterm infants fed ALA-supplemented diets compared with controls. The findings suggest that ALA-supplemented diets improve the DHA status of infants. Further studies are needed to provide convincing evidence regarding the effects of ALA supplementation of formula on infant growth and development.  相似文献   

6.
Saito H  Yamashiro R  Alasalvar C  Konno T 《Lipids》1999,34(10):1073-1082
The total lipid and fatty acid compositions of tissues and the stomach contents of three subtropical marine fish species, subfamily Caesioninae, Caesio diagramma and C. tile, and family Siganidae Siganus canaliculatus, were investigated to clarify the differences between these species. Triacylglycerols (TAG) were the dominant depot lipids of the three species, whereas wax esters were found as a minor component. In particular, muscle lipids were found to contain mainly glycerol derivatives such as TAG and phospholipids. The major fatty acids identified in the three species were 16∶0, 18∶0, 18∶1n−9, and 22∶6n−3 (docosahexaenoic acid, DHA). In addition, noticeable levels of 16∶1n−7, 18∶1n−7, 20∶4n−6 (arachidonic acid, AA), and 20∶5n−3 (eicosapentaenoic acid) were found. DHA was the most abundant polyunsaturated fatty acid (PUFA) in the muscle and viscera lipids of the three species. The high DHA levels in the lipids of all the organs were found to be higher than those of the lipid extracted from the stomach contents of the three fishes. In addition, the specimens of S. canaliculatus contained significantly higher levels of AA in its tissues than did the other two species. A high AA content is unusual since such high levels of n−6 PUFA are rarely found in higher marine organisms. These levels may be due to its characteristic feeding pattern, because S. canaliculatus prefer and mainly feed on seaweed, which often contains high amounts of n−6 PUFA, such as linoleic acid (18∶2n−6) and AA.  相似文献   

7.
The effect of fish oil high in docosahexaenoic acid (22∶6n−3) and low in eicosapentaenoic acid (20∶5n−3) in formula on blood lipids and growth of full-term infants was studied. Infants were fed formula with about 15% oleic acid (18∶1), 32% linoleic acid (18∶2n−6), 4.9% linolenic acid (18∶3n−3) and 0, 0.10 or 0.22% 22∶6n−3, or 35% 18∶1, 20% 18∶2n−6, 2.1% 18∶3n−3 and 0, 0.11 or 0.24% 22∶6n−3 from 3 d to 16 wk of age (n=16, 18, 17, 21, 17, 16, respectively). The formulae had <0.1% 20∶5n−3 and no arachidonic acid (20∶4n−6). Breast-fed infants (n=26) were also studied. Plasma phospholipid and red blood cell (RBC) phosphatidylcholine (PC) and phosphatidylethanolamine (PE) fatty acids were determined at 3 d and 4, 8, and 16 wk of age. These longitudinal analyses showed differences in blood lipid 22∶6n−3 between breast-fed and formula-fed infants depending on the feeding duration. At 16 wk, infants fed formula with 0.10, 0.11% 22∶6n−3, or 0.22% 22∶6n−3 had similar 22∶6n−3 levels in the plasma phospholipid and RBC PC and PE compared with breast-fed infants and higher 22∶6n−3 than infants fed formula without 22∶6n−3. Formula with 0.24% 22∶6n−3, however, resulted in higher plasma phospholipid 22∶6n−3 than in breast-fed infants at 16, but not 4 or 8 wk of age. Plasma and RBC phospholipid 20∶4n−6 was lower in formula-fed than breast-fed infants, but no differences in growth were found. Higher blood lipid C20 and C22 n−6 and n−3 fatty acids in infants fed formula with 20% 18∶2n−6 and 2.4% 18∶3n−3 compared with 32% 18∶2n−6 and 4.9% 18∶3n−3 show the increase in blood lipid 22∶6n−3 in response to dietary 22∶6n−3 depending on other fatty acids in the formula.  相似文献   

8.
Artificially reared infant rats were used to determine the effects of long-chain polyunsaturated fatty acid (LCP-UFA) supplementation on blood and tissue concentrations of arachidonic acid (AA) and docosahexaenoic acid (DHA). Beginning at 7 d of age, infant rats were fed for 10 d with rat milk formulas supplemented with AA at 0,0.5 and 1.0%, or supplemented with DHA at 0,0.5 and 1.0% of total fatty acid. The supplementation of AA increased accretion of the fatty acid in tissue and blood phospholipids with a maximum increase of 9% in brain, 15% in liver, 25% in erythrocytes, and 43% in plasma above the values of unsupplemented infant rats. Rat milk formula containing 1.0% of AA had no added benefits over that containing 0.5% of AA. The supplementation of DHA increased phospholipid DHA by a maximum of 24% in brain, 87% in liver, 54% in erythrocytes, and 360% in plasma above the unsupplemented control. The increase in tissue and blood DHA was concentration-dependent on formula fatty acid. Brain phosphatidylcholine and phosphatidylethanolamine were similarly enriched with AA and DHA by supplementation of the corresponding fatty acids. In general the observed increase of AA was accompanied by a decrease in 16:0, 18:1n−9, and/or 18:2n−6, whereas the increased DHA was associated with a reduction of 18:1n−9, 18:2n−6, and/or 20:4n−6. Clearly, infant rats were more responsive to DHA than AA supplementation, suggesting a great potential of dietary manipulation to alter tissue DHA concentrations. However, the supplementation of DHA significantly decreased tissue and blood AA/DHA ratios (wt%/wt%), whereas there was little or no change in the ratio by AA supplementation. Although the physiological implications of the levels of AA and DHA, and AA/DHA ratios achieved under the present experimental conditions are not readily known, the findings suggest that artificial rearing could provide a suitable model to investigate LCPUFA requirements using various sources of AA and DHA in rats.  相似文献   

9.
The activity of Δ6- and Δ5-desaturase, enzymes required for the synthesis of AA and DHA, are impaired in human and experimental diabetes. We have investigated whether neonates of type 1 diabetic women have compromised plasma AA and DHA at birth. Cord blood was obtained from healthy babies born to mothers with (n=31) and without (n=59) type 1 diabetes. FA composition of plasma choline phosphoglycerides (CPG), TG, and cholesterol esters (CE) was assayed. The neonates of the diabetics had lower levels of AA (20∶4n−6, P<0.0001), adrenic acid (22∶4n−6, P<0.01), Σn−6 metabolites (P<0.0001), docosapentaenoic acid (22∶5n−3, P<0.0001), DHA (22∶6n−3, P<0.0001), Σn−3 (P<0.0001), and Σn−3 metabolites (P<0.0001) in CPG compared with the corresponding babies of the nondiabetic mothers. Similarly, they had lower levels of AA (P<0.05), Σn−6 metabolites (P<0.05), DHA (P<0.0001), and Σn−3 metabolites (P<0.01) in plasma CE. There was also a nonsignificant reduction of AA and DHA in TG in the babies of the diabetic group. The current investigation indicates that healthy neonates born to mothers with type 1 diabetes have highly compromised levels of AA and DHA. These nutrients are of critical importance for neurovisual and vascular system development. In poorly controlled maternal diabetes, it is conceivable that the relative “insufficiency” of AA and DHA may exacerbate speech and reading impairments, behavioral disorders, suboptimal performance on developmental tests, and lower IQ, which have been reported in some children born to mothers with type 1 diabetes mellitus. Further studies are needed to understand the underlying mechanism for this biochemical abnormality and its implications for fetal and infant development.  相似文献   

10.
Despite the potential use of long-chain polyunsaturated fatty acid (LCPUFA) supplementation to promote growth and neural development of the infant, little is known about potential harmful effects of the supplementation. The present study determined whether supplementation with arachidonic acid (AA) and/or docosahexaenoic acid (DHA) in rat milk formula (RMF) affects saturation of pulmonary surfactant phospholipids (PL). Beginning at 7 d of age, infant rats were artificially fed for 10 d with RMF supplemented with AA at 0, 0.5, and 1.0% of total fatty acid, or supplemented with DHA at 0, 0.5, and 1.0%, or cosupplemented with AA and DHA at levels of 0∶0, 0.5∶0.3, and 1.0∶0.6% of the fat blend. Lung tissue PL contained 43 weight percent palmitate (16∶0) of total fatty acids in infant rats fed the unsupplemented RMF. The supplementation with AA at both 0.5 and 1.0% decreased the weight percentage of 16∶0 and stearate (18∶0), indicating a decrease in saturation of PL. The observed decreases were accompanied by increases in AA and linoleic acid (18∶2n−6). Surfactant phosphatidylcholine (PC) consisted of 71 weight percent 16∶0 in the unsupplemented group, and this highly saturated PC was not altered by the cosupplementation with AA and DHA although there was a slight increase in DHA. Similarly, the cosupplementation did not change fatty acid composition of surfactant PL when compared with the unsupplemented group. The cosupplementation slightly decreased the weight percentage of 16∶0 with a proportional increase in 18∶0 leading to an unchanged weight percentage of total saturated fatty acids. These results suggest that, unlike lung tissue PL, the composition of saturated fatty acids in surfactant PL, particularly PC, is resistant to change by dietary AA and DHA supplementation. This, together with the unchanged concentration of total fatty acids in surfactant PC, indicates that LCPUFA cosupplementation causes no effect on pulmonary surfactant.  相似文献   

11.
The present study addresses the question whether nervonic acid (24∶1n−9) accumulation in sphingomyelin (SM) of red blood cells (RBC) could yield information on cerebrum maturation in premature infants. The study included 28 premature eutrophic infants of 31.5 wk gestational age. Eleven were fed with human milk, nine with a regulator formula and eight with an α-linolenate-enriched formula. The fatty acid composition of the SM fraction was determined by gas-liquid chromatography on a 50-m fused silica capillary column. At 32 wk gestational age, the main fatty acids in SM were 16∶0, 18∶0, 20∶0, 22∶0, 24∶0 and 24∶1n−9. After five weeks of feeding, at week 37 of postconceptional age, the most striking variation was a rise in 24∶1n−9, from 9.9±0.7 to 12.8±0.9 (P<0.02), regardless of regimen in all three feeding groups. The rise in 24∶1n−9 after birth in premature eutrophic infants is the beginning of a trend toward the higher levels in 24∶1n−9 observed in mature newborns and older infants. The 24∶1n−9 level in SM of RBC from premature infants may reflect 24∶1n−9 levels in SM of brain and could thus reflect brain maturity.  相似文献   

12.
The brain contains high levels of the long-chain n−3 FA DHA(22∶6n−3), mainly in the gray matter and synaptosomes. Adequate intake of DHA is crucial for optimal nervous system function, particularly in infants. Supplementation of infant formulas with DHA at levels similar to human breast milk is recommended for biochemical and functional benefits to neonates. We generated transgenic mice that produce elevated levels of n−3 PUFA in their milk by expressing the Caenorhabditis elegans n−3 FA desaturase under the control of a lactation-induced goat beta-casein promoter. To examine the postnatal effects of consuming the n−3-enriched milk, we compared the growth and brain and plasma FA composition of mouse pups raised on milk from transgenic dams with those observed for pups raised on milk from nontransgenic dams. A significant decrease in arachidonic acid (ARA, 20∶4n−6) and concomitant increases in n−3 PUFA were observed in the phospholipid fraction of transgenic mouse milk. The n−6∶n−3 FA ratios were 4.7 and 34.5 for the transgenic and control milk phospholipid fractions, respectively. DHA and DPA (22∶5n−6) comprised 15.1% and 2.8% of brain FA from weanling mice nursed on transgenic dams, as compared with 6.9% and 9.2% for weanling mice nursed on control dams, respectively. This transgenic mouse model offers a unique approach to disassociate the effects and fetal programming resulting from a high n−6∶n−3 FA ratio gestational environment from the postnatal nutritional effects of providing milk with differing n−6∶n−3 FA ratios.  相似文献   

13.
This study evaluated the effects of dietary supple-mentation with ψ-linolenic acid (GLA, 18∶3n−6) and docosahexaenoic acid (DHA, 22∶6n−3) on the fatty acid composition of the neonatal brain in gastrostomized rat pups reared artificially from days 5–18. These pups were fed rat milk substitutes containing fats that provided 10% linoleic acid and 1% α-linolenic acid (% fatty acids) and, using a 2×3 factorial design, one of two levels of DHA (0.5 and 2.5%), and one of three levels of GLA (0.5, 1.0, and 3.0%). A seventh artificially reared groups served as a reference group and was fed 0.5% DHA and 0.5% arachidonic acid (AA, 20∶4n−6); these levels are within the range of those found in rat milk. The eighth group, the suckled control group, was reared by nursing dams fed a standard American Institute of Nutrition 93M chow. The fatty acid composition of the phosphatidylethanolamine, phosphatidyl-choline, and phosphatidylserine/phosphatidylinositol membrane fractions of the forebrain on day 18 reflected the dietary composition in that high levels of dietary DHA resulted in increases in DHA but decreases in 22∶4n−6 and 22∶5n−6 in brain. High levels of GLA increased 22∶4n−6 but, in contrast to previous findings with high levels of AA, did not decrease levels of DHA. These results suggest that dietary GLA, during development, differs from high dietary levels of AA in that it does not lead to reductions in brain DHA.  相似文献   

14.
There is little evidence as to the fatty acid composition of the cerebellum in infancy and it remains uncertain whether milk diet can influence its composition. We therefore examined cerebellar gray and white matter of infants less than 6 mon old who had died unexpectedly. The fatty acid content of 33 gray and 21 white matter specimens from infants born at term and 6 gray and 5 white matter specimens from pretern infants was assessed by gas chromatographic/mass spectrometric analysis. Infants were grouped according to whether they had received human or manufactured formula milk. Whereas cerebellar cortex docosahexaenoic acid (DHA, 22∶6n−3) concentrations were significantly lower (P<0.01) in the formula-fed than breast-fed infants, no differences existed between the term (n=10) and preterm (n=5) Scientific Milk Adaptation (SMA) formula-fed infants. Cerebellar white matter DHA concentrations were similarly lower (P<0.01) in the SMA formula-fed infants (n=8) than in an age-matched breast-fed group. Low concentrations of cerebellar white matter lignoceric (24∶0) and nervonic acid (24∶1n−9) in two 7-wk-old preterm infants appeared to correlated with postgestational rather than chronological age. Dietary long-chain polyunsaturated fatty acids particularly DHA, are probably essential for normal development of the infant cerebellum.  相似文献   

15.
Saito H 《Lipids》2004,39(10):997-1005
The lipid and FA composition of the total lipids of the pearl oyster Pinctada fucata martensii, in different seasons and in different areas, were analyzed to clarify its lipid physiology and to estimate the possible influence of its prey phytoplankton. TAG and sterols were the major components in the neutral lipids in all conditions, whereas high levels of phospholipids (PE and PC) were found in the polar lipids. The major FA in the TAG in all samples were 14∶0, 16∶0, and 18∶0 as saturated FA (saturates); 16∶1n−7, 18∶1n−9, and 18∶1n−7 as monoenoic FA (monoenes); and 20∶4n−6 (arachidonic acid: AA), 20∶5n−3 (EPA), and 22∶6n−3 (DHA) as PUFA. The major components found in the polar lipids were 16∶0 and 18∶0 as saturates; 22∶2n−9, 15 and 22∶2n−7, 15 as non-methylene-interrupted dienes (NMID), and AA, 22∶3n−6, 9, 15, EPA, and DHA as PUFA. Although it is a marine animal, characteristically high levels of AA were found in both the TAG and phospholipids. This result suggests that lipids of P. fucata may be influenced by those of its phytoplanktonic prey. The increase in levels of NMID from TAG to PE with a decrease in those of monoenes suggests that the tissues of this species are able to biosynthesize only the less unsaturated PUFA, such as NMID. In particular, NMID derivatives are considered to be biosynthesized in the PE; thus, they might play a particular role in the membrane, because NMID were characteristically localized only in the PE.  相似文献   

16.
In this study, a new marine oil that contains 45% docosahexaenoic acid (DHA, 22∶6n−3) and 13% docosapentaenoic acid (DPA, 22∶5n−6) was administered to rats. The metabolism and distribution of DPA in rats was investigated. In experiment 1, the effects of DHA and n−6 fatty acids (linoleic acid, I A; arachidonic acid, AA; and DPA) on AA contents were investigated in vivo. LA group: LA 25%, DHA 30%; LA-DPA group: LA 15%, DPA 10%, DHA 35%; LA-AA-DPA group: LA 10%, AA 5%, DPA 10%, DHA 35% were administered to rats for 4 wk. In the liver, the AA content in the LA-DPA and LA-AA-DPA groups was significantly higher than in the LA group. The decreased AA contents in the LA group might be caused by DHA administration. Although DHA also was administered in the LA-DPA and LA-AA-DPA groups, the AA contents in these two groups did not decrease. These results suggested that DPA retroconverted to AA, blunting the decrease in AA content caused by DHA administration. To conduct a detailed investigation on DPA metabolism and its relation with AA and DHA, rat hepatocytes were cultured with pruified DPA and DHA for 24 h. We discovered the retroconversion of DPA to AA occurred only when AA content was decreased by a high DHA administration; it did not occur when AA content was maintained at a normal level.  相似文献   

17.
Harbige LS 《Lipids》2003,38(4):323-341
The essentiality of n−6 polyunsaturated fatty acids (PUFA) is described in relation to a thymus/thymocyte accretion of arachidonic acid (20∶4n−6, AA) in early development, and the high requirement of lymphoid and other cells of the immune system for AA and linoleic acid (18∶2n−6, LA) for membrane phospholipids. Low n−6 PUFA intakes enhance whereas high intakes decrease certain immune functions. Evidence from in vitro and in vivo studies for a role of AA metabolites in immune cell development and functions shows that they can limit or regulate cellular immune reactions and can induce deviation toward a T helper (Th)2-like immune response. In contrast to the effects of the oxidative metabolites of AA, the longer-chain n−6 PUFA produced by γ-linolenic acid (18∶3n−6, GLA) feeding decreases the Th2 cytokine and immunoglobulin (Ig)G1 antibody response. The n−6 PUFA, GLA, dihomo-γ-linolenic acid (20∶3n−6, DHLA) and AA, and certain oxidative metabolites of AA can also induce T-regulatory cell activity, e.g., transforming growth factor (IGF)-β-producing T cells; GLA feeding studies also demonstrate reduced proinflammatory interleukin (IL)-1 and tumor necrosis factor (TNF)-α production. Low intakes of long-chain n−3 fatty acids (fish oils) enhance certain immune functions, whereas high intakes are inhibitory on a wide range of functions, e.g., antigen presentation, adhesion molecule expression, Th1 and th2 responses, proinflammatory cytokine and eicosanoid production, and they induce lymphocyte apoptosis. Vitamin E has a demonstrable critical role in long-chain n−3 PUFA interactions with immune functions, often reversing the effects of fish oil. The effect of dietary fatty acids on animal autoimmune disease models depends on both the autoimmune model and the amount and type of fatty acids fed. Diets low in fat, essential fatty acid deficient (EFAD), or high in long-chain n−3 PUFA from fish oils increase survival and reduce disease severity in spontaneous autoantibody-mediated disease, whereas high-fat LA-rich diets increase disease severity. In experimentally induced T cell-mediated autoimmune disease, EFAD diets or diets supplemented with long-chain n−3 PUFA augment disease, whereas n−6 PUFA prevent or reduce the severity. In contrast, in both T cell- and antibody-mediated autoimmune disease, the desaturated/elongated metabolites of LA are protective. PUFA of both the n−6 and n−3 families are clinically useful in human autoimmune-inflammatory disorders, but the precise mechanisms by which these fatty acids exert their clinical effects are not well understood. Finally, the view that all n−6 PUFA are proinflammatory requires revision, in part, and their essential regulatory and developmental role in the immune system warrants appreciation.  相似文献   

18.
The addition of long-chain polyunsaturated fatty acids (LCP: C20, and C22) to infant formula may permit fatty acid accretion rates similar to breast-fed infants, and may have long-term outcome benefits, such as improved visual acuity and cognitive development. Although fish oil may provide a source of n-3 LCP, sources of n-6 LCP have been more difficult to identify. The present study evaluates the effects of n-3 and n-6 LCP derived from single-cell oils on liver, plasma, and brain fatty acid levels in a neonatal animal model. Newborn rat pups were suckled for 14 d by dams receiving diets containing n-3 LCP alone or combinations of n-3 LCP and increasing doses of linoleic acid (18∶2n−6) or arachidonic acid (20∶4n−6). Dietary groups received 2% n−3 LCP and 1, 2, or 5% of either 18∶2n−6 or 20∶4n−6. The 20∶4n−6 source also contained modest levels of 18∶2n−6. At the termination of the study, liver, plasma, and brain were obtained from the rat pups and the phospholipid fatty acid profiles determined. The results indicate complex interactions of n−3 and n−6 fatty acids. Groups receiving dietary 20∶4n−6 incorporated higher levels of n−6 LCP into tissues than did the groups receiving 18∶2n−6. The brain was relatively resistant to changes in fatty acid composition compared with the liver and plasma. As expected, tissue n−3 LCP levels were reciprocally related to n−6 levels. The present results document that single-cell LCP oils are bioavailable in a neonatal animal model. The use of 20∶4n−6 is a more effective means of supporting n−6 status than the use of 18∶2n−6. These results may have implications for the addition of LCP to infant formula.  相似文献   

19.
Xu X  Kestemont P 《Lipids》2002,37(3):297-304
Eurasian perch, Perca fluviatilis, were fed a semipurified fat-free diet for 4 wk, followed by a 16% feeding supplementation of either olive oil (OO), safflower oil (SO), linseed oil (LO), or cod liver oil (CLO) as the only lipid source in each diet for 10 wk. Significant reductions in total lipid of tissues were observed (31.4% in viscera, 66.7% in muscle, and 74.1% in liver) after feeding the fat-free diet. The SO-, LO-, and CLO-fed fish significantly increased lipid deposition in liver and viscera compared to fish fed the OO diet; however, muscle lipid levels were not significantly affected. Large amounts of dietary 18∶1n−9 were incorporated directly into tissue lipids when fish were fed the OO diet. The LO diet significantly elevated 18∶4n−3, 20∶5n−3, 22∶5n−3, and 22∶6n−3 in the liver compared to fish fed OO or SO diets, and the n−3/n−6 ratio was 16 times that of the SO group, with significantly high desaturation and elongation products of 18∶3n−3. These results suggest that Δ6 and Δ5 desaturases are highly active in Eurasian perch, and that the enzymes at this dietary n−3/n−6 ratio favor 18∶3n−3 over 18∶2n−6 as substrate. The SO diet significantly increased 18∶3n−6, 20∶3n−6, and 22∶5n−6 in the liver and significantly decreased EPA and DHA. This indicates that desaturation enzymes were not specifically favoring n−3 over n−6 acids in perch lipid metabolism, and that these elongation and desaturation enzymes were influenced by n−3 and n−6 FA content in the diet. The present study indicates that high tissue content of DHA in the muscle of Eurasian perch was attributable to the greater ability for n−3 acid bioconversion.  相似文献   

20.
Pakala R  Pakala R  Benedict C 《Lipids》1999,34(9):915-920
It is well known that vascular smooth muscle cell (SMC) proliferation is a key step in atheromatous plaque formation. Thromboxane A2 (T×A2), released from aggregating platelets and an injured vessel wall, may play an important role in the development of atheromatous plaque. Many animal studies have suggested that n−3 polyunsaturated fatty acids eicosapentaenoic acid (EPA, 20∶5n−3) and docosahexaenoic acid (DHA, 22∶6n−3) present in the fish oils have antiatherosclerotic effects. In the present study, we investigated the effect of EPA and DHA on I×A2-induced SMC proliferation. To determine the functional selectivity of n−3 fatty acids, we also tested the effect of arachidonic acid (AA, 20∶4n−6), γ-linolenic acid) (INA, 18∶3n−6), and oleic acid (OA, 18∶1n−9) on T×A2-induced SMC proliferation. Only LPA and DHA prevented the SMC proliferation induced by the T×A2 mimetic U46619. When EPA and DHA were added together in the ratio in which they are present in menhaden oil, EPA and DHA acted synergistically to block the SMC proliferation induced by the TXA2-mimetic. These findings suggest that the n−3 polyunsaturated fatty acids in fish oils may exert antiatherosclerotic effects by blocking the mitogenstimulated proliferation of SMC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号