首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the robust H∞ control problem for uncertain discrete-time systems with time-varying state delay is con- sidered. Based on the Lyapunov functional method, and by resorting to the new technique for estimating the upper bound of the difference of the Lyapunov functional, a new less conservative sufficient condition for the existence of a robust H∞ controller is obtained. Moreover, the cone complementary linearisation procedure is employed to solve the nonconvex feasibility problem. Finally, several numerical examples are presented to show the effectiveness and less conservativeness of the proposed method.  相似文献   

2.
The robust H∞ control problem for discrete-time uncertain systems is investigated in this paper. The uncertain systems are modelled as a polytopic type with linear fractional uncertainty in the vertices. A new linear matrix inequality (LMI) characterization of the H∞ performance for discrete systems is given by introducing a matrix slack variable which decouples the matrix of a Lyapunov function candidate and the parametric matrices of the system. This feature enables one to derive sufficient conditions for discrete uncertain systems by using parameter-dependent Lyapunov functions with less conservativeness. Based on the result, H∞ performance analysis and controller design are carried out. A numerical example is included to demonstrate the effectiveness of the proposed results.  相似文献   

3.
In this paper, the global robust exponential stability is considered for a class of neural networks with parametric uncer-tainties and time-varying delay. By using Lyapunov functional method, and by resorting to the new technique for estimating the upper bound of the derivative of the Lyapunov functional, some less conservative exponential stability criteria are derived in terms of linear matrix inequalities (LMIs). Numerical examples are presented to show the effectiveness of the proposed method.  相似文献   

4.
The H∞ filtering problem for continuous-time polytopic uncertain time-delay systems is investigated. Attention is focused on the design of full-order filters guaranteeing a prescribed H∞ attenuation level for the filtering error system. First, a simple alternative proof is given for an improved linear matrix inequality (LMI) representation of H∞ performance. Then, based on the performance criterion which keeps Lyapunov matrices out of the product of system dynamic matrices, a suficient condition for the existence of robust estimators is formulated in terms of LMIs, and the corresponding filter design is cast into a convex optimization problem which can be effciently handled by using standard numerical algorithms. It is shown that the proposed design strategy allows the use of parameter-dependent Lyapunov functions and hence it is less conservative than some earlier results. A numerical example is employed to demonstrate the feasibility and advantage of the proposed design.  相似文献   

5.
This paper is concerned with the non-fragile H∞ filter design problem for uncertain discrete-time Takagi-Sugeno (T-S) fuzzy systems with time delay. To begin with, the T-S fuzzy system is transformed to an equivalent switching fuzzy system. Then, based on the piecewise Lyapunov function and matrix decoupling technique, a new delay-dependent non-fragile H∞ filtering method is proposed for the switching fuzzy system. The proposed condition is less conservative than the previous results. Since only a set of LMIs is involved, the filter parameters can be solved directly. Finally, a design example is provided to illustrate the validity of the proposed method.  相似文献   

6.
This paper studies the problem of tracking control for a class of switched nonlinear systems with time-varying delay. Based on the average dwell-time and piecewise Lyapunov functional methods, a new exponential stability criterion is obtained for the switched nonlinear systems. The designed output feedback H∞controller can be obtained by solving a set of linear matrix inequalities(LMIs).Moreover, the proposed method does not need that a common Lyapunov function exists for the switched systems, and the switching signal just depends on time. A simulation example is provided to demonstrate the effectiveness of the proposed design scheme.  相似文献   

7.
In this paper, delay-dependent robust stabilization and H∞ control for uncertain stochastic Takagi-Sugeno (T-S) fuzzy systems with discrete interval and distributed time-varying delays are discussed. The purpose of the robust stochastic stabilization problem is to design a memoryless state feedback controller such that the closed-loop system is mean-square asymptotically stable for all admissible uncertainties. In the robust H∞ control problem, in addition to the mean-square asymptotic stability requirement, a prescribed H∞ performance is required to be achieved. Sufficient conditions for the solvability of these problems are proposed in terms of a set of linear matrix inequalities (LMIs) and solving these LMIs, a desired controller can be obtained. Finally, two numerical examples are given to illustrate the effectiveness and less conservativeness of our results over the existing ones.  相似文献   

8.
The robust stability and robust sliding mode control problems are studied for a class of linear distributed time-delay systems with polytopic-type uncertainties by applying the parameter-dependent Lyapunov functional approach combining with a new method of introducing some relaxation matrices and tuning parameters, which can be chosen properly to lead to a less conservative result. First, a sufficient condition is proposed for robust stability of the autonomic system; next, the sufficient conditions of the robust stabilization controller and the existence condition of sliding mode are developed. The results are given in terms of linear matrix inequalities (LMIs), which can be solved via efficient interior-point algorithms. A numerical example is presented to illustrate the feasibility and advantages of the proposed design scheme.  相似文献   

9.
H_∞ controller synthesis of piecewise discrete time linear systems   总被引:1,自引:0,他引:1  
This paper presents an H∞ controller design method for pieccwise discrete time linear systems based on a piecewise quadratic Lyapunov function. It is shown that the resulting closed loop system is globally stable with guaranteed H∞ perfomiance and the controller can be obtained by solving a set of bilinear lnatrLx inequalities. It has been shown that piecewise quadratic Lyapunov functions are less conservative than the global qnadnmc Lyapunov functions. A simulation example is also given to illustrate the advantage of the proposed approach.  相似文献   

10.
This paper deals with delay-dependent robust H-infinity control for uncertain discrete-time systems with interval time-varying delay. By using a new Lyapunov functional and the convex combination method, a new delay-dependent stability criterion is established. Some redundant variable matrices are removed in the new conditions, which makes the obtained results more efficient. Then, an iterative algorithm based on the cone complementarity Linearization method is proposed to obtain the delay-dependent robust H-infinity controller. Numerical examples are given to show the effectiveness of the proposed method.  相似文献   

11.
This work conducts robust Hanalysis for a class of quantum systems subject to perturbations in the interaction Hamiltonian.A necessary and sufficient condition for the robustly strict bounded real property of this type of uncertain quantum system is proposed.This paper focuses on the study of coherent robust Hcontroller design for quantum systems with uncertainties in the interaction Hamiltonian.The desired controller is connected with the uncertain quantum system through direct and indirect couplings.A necessary and sufficient condition is provided to build a connection between the robust Hcontrol problem and the scaled Hcontrol problem.A numerical procedure is provided to obtain coefficients of a coherent controller.An example is presented to illustrate the controller design method.  相似文献   

12.
The problem of mixed H2/H∞ filtering for polytopic Delta operator systems is investigated. The aim is to design a linear asymptotically stable filter which guarantees that the filtering error system has different performances in different filtering channels. Based on a parameter-dependent Lyapunov function, a new mixed H2/H∞ performance criterion is presented. Upon this performance criterion, a sufficient condition for the full-order mixed H2/H∞ filter is derived in terms of linear matrix inequalities. The filter can be obtained from the solution of a convex optimization problem. The proposed filter design procedure is less conservative than the strategy based on the quadratic stability notion. A numerical example is given to illustrate the feasibility of the proposed approach.  相似文献   

13.
This paper investigates the robust graph coloring problem with application to a kind of examination timetabling by using the matrix semi-tensor product, and presents a number of new results and algorithms. First, using the matrix semi-tensor product, the robust graph coloring is expressed into a kind of optimization problem taking in an algebraic form of matrices, based on which an algorithm is designed to find all the most robust coloring schemes for any simple graph. Second, an equivalent problem of robust graph coloring is studied, and a necessary and sufficient condition is proposed, from which a new algorithm to find all the most robust coloring schemes is established. Third, a kind of examination timetabling is discussed by using the obtained results, and a method to design a practicable timetabling scheme is presented. Finally, the effectiveness of the results/algorithms presented in this paper is shown by two illustrative examples.  相似文献   

14.
Robust Dissipative Control for Linear Multi-variable Systems   总被引:1,自引:0,他引:1  
Robust quadratic dissipative control for a class of linear multi-variable systems with pa- rameter uncertainties is considered,where the uncertainties are expressed in a linear fractional form. For the nominal system without uncertainties,the equivalence between quadratic dissipativeness and positive realness is established,and conditions are derived for linear systems to be quadratic dissi- pative.As for uncertain systems,it is shown that the robust quadratic dissipative control problem for the uncertain system can be reduced to the corresponding problem for a related system without uncertainties.The control problem concerned can be solved using LMI approach.The results of the paper unify existing results on H_∞control and positive real control and provide a more flexible and less conservative control design method.  相似文献   

15.
This paper presents a control strategy for stabilization of the nonholonomic control systems with strongly nonlinear drifts and state delay.Applying a novel Lyapunov functional and backstepping recursive method,the design of robust nonlinear state feedback controllers is proposed,which can guarantee the stability of the closed-loop systems.Finally,a numerical example is provided to show the effectiveness of the method.  相似文献   

16.
This paper focuses on the design problem of a memoryless state feedback robust H-infinity controller for a class of uncertain neutral systems. By using a newly established integral inequality, a new delay-dependent bounded real lemma for such systems is derived without involving a fixed model transformation. Furthermore, new delay-dependent sufficient conditions for the existence of robust H-infinity controllers are presented in terms of nonlinear matrix inequalities. A design procedure involving an iterative algorithm is also proposed to design such controllers. Numerical examples are given to demonstrate the less conservatism of the proposed method.  相似文献   

17.
18.
This paper presents an H∞ controller design method for piecewise discrete time linear systems based on a piecewise quadratic Lyapunov function. It is shown that the resulting closed loop system is globally stable with guaranteed H∞ performance and the controller can be obtained by solving a set of bilinear matrix inequalities. It has been shown that piecewise quadratic Lyapunov functions are less conservative than the global quadratic Lyapunov functions. A simulation example is also given to illustrate the advantage of the proposed approach.  相似文献   

19.
In this paper, the problem of robust absolute stability of Lurie system with probabilistic time-varying delay and normbounded parametric uncertainty is considered. The time delay variation range is divided into two sub-intervals. By considering the probability distribution of the time-varying delay between the two sub-intervals and the knowledge of the delay variation range, a novel linear matrix inequalities (LMIs) based stability condition is derived by defining a Lyapunov Krasovskii functional. It is illustrated with the help of numerical examples that the derived stability criteria can lead to less conservative results as compared to the results obtained by the traditional method of using the delay variation range information only.  相似文献   

20.
This paper addresses the problems of the robust stability and robust stabilization of a discrete-time system with polytopic uncertainties. A new and simple method is presented to directly decouple the Lyapunov matrix and the system dynamic matrix. Combining this method with the parameter-dependent Lyapunov function approach yields new criteria that include some existing ones as special cases. A numerical example illustrates the improvement over the existing ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号