首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 140 毫秒
1.
采用MF-PECVD法制备ZnO和高透射率的ZAO薄膜,分析了影响ZnO和ZAO薄膜质量的因素。研究了透射率与衬底温度、沉积时间、锌源浓度以及A l杂质含量之间的关系,讨论了工艺参数对薄膜透射率、颜色、均匀度、附着力、成膜速率及其晶型的影响,给出了制备ZnO和ZAO薄膜的优化条件。  相似文献   

2.
氧气分压对磁控溅射法制备ZAO膜的影响   总被引:1,自引:0,他引:1  
利用直流磁控溅射技术在无机玻璃衬底上制备了ZAO透明导电薄膜。研究了溅射过程中氧气分压对ZAO薄膜的结构和光电特性的影响,结果表明:当氧气分压为0Pa时,薄膜结晶度良好,具有最小电阻率和较高的可见光透过率。  相似文献   

3.
不同掺Al3+浓度的ZnO:Al薄膜性能研究   总被引:4,自引:0,他引:4  
采用溶胶-凝胶法制备ZnO:Al (ZAO)薄膜,得到了不同掺Al3+浓度的ZAO薄膜;利用X射线衍射仪分析、原子力显微镜、紫外-可见分光光度计及四探针法等仪器与方法对其性能进行了测试。通过分析比较,得出所制备的ZAO薄膜为多晶纤锌矿结构,薄膜表面平整、晶粒致密均匀;Al3+掺杂能提高其导电性能:低掺杂时,薄膜在紫外-可见光范围的透过率超过80%,并伴有蓝移现象产生;高掺杂时,其透过率无明显增加,但蓝移现象加剧,最大蓝移量达340 nm。  相似文献   

4.
以乙酸锌和硝酸铝为原料,氨水为催化剂,通过改变反应温度和pH值,以及干燥工艺得到三种工艺合成的ZAO粉体,即共沉淀一超临界流体干燥法(SCFD)制备的ZAO粉、共沉淀一普通干燥法制备的ZAO粉和湿态氢氧化锌铝沉淀物粉体.通过XRD,TEM,SEM和差热分析对三种ZAO粉进行了物相、颗粒大小与团聚情况和加热过程的物理化学变化进行了分析.采用浸渍一提拉法制备了ZAOp/ZAO薄膜,对其可见光透射率、导电率和表面形貌进行了测试和分析.结果表明以湿态氢氧化锌铝方式制备的ZAOp/ZAO透明导电薄膜的可见光透射率最高,大于82%;方块电阻最低,电阻为83Ω.  相似文献   

5.
采用直流磁控溅射技术,在玻璃衬底上制备了ZnO:Al(ZAO)薄膜样品。其他参数不变,在不同的温度下对样品进行了退火处理,研究了薄膜的结构性质、电学和光学性质随退火温度的变化关系。实验结果表明:在退火温度为200℃时,ZAO薄膜具有较优的光电性能,其电阻率为9.62×10-5.cm,可见光区平均透射率为89.2%。  相似文献   

6.
采用直流磁控溅射技术,以氧化锌铝陶瓷靶为靶材,在玻璃衬底上制备了ZnO∶Al(ZAO)薄膜,研究了不同工艺参数对薄膜晶体结构及光学性质的影响.实验结果表明:ZAO薄膜具有六角纤锌矿结构且呈c轴择优取向,晶粒垂直于衬底方向柱状生长,衬底温度和氧分压对薄膜的结构和光学性能有重大影响.在衬底温度为200 ℃、氧氩分压比为1%时,薄膜结晶性能最好,平均透射率可达86.5%.  相似文献   

7.
利用磁控溅射法在溅射功率分别为30,50,80,100W条件下制备ZAO薄膜,并通过原子力显微镜(AFM)、X射线衍射(XRD)谱对制得的薄膜样品进行表面形貌、结构特性和黏附性能进行研究。XRD结果表明,随着溅射功率的增加,ZAO薄膜呈现了明显的(002)择优取向,结晶质量获得提高。通过原子力显微镜对样品的二维、三维以及剖面线图进行分析。随着溅射功率增大,薄膜样品表面较均匀致密,晶粒生长较充分,结晶质量较高,粗糙度和黏附力均增大。  相似文献   

8.
采用溶胶-凝胶工艺在石英玻璃基底上制备了ZAO(掺铝氧化锌)薄膜,系统研究了各工艺参数,如溶胶浓度、Al掺杂量及热处理温度对其结构和性能的影响.XRD分析结果表明,ZAO薄膜具有ZnO晶体结构并具有沿(002)晶面择优生长的特性.SEM结果显示,所制薄膜的晶粒尺寸约为50 nm,浸涂1次溶胶所得薄膜的厚度约为2.6μm.溶胶浓度为0.3 mol.L-1,掺杂Al为3 at.%的薄膜试样在700℃热处理后,8~14μm波段的平均红外发射率降至0.568.  相似文献   

9.
研究了Al掺杂对采用直流磁控溅射方法制备的ZnO薄膜结构及光学性能的影响。X射线衍射结果揭示薄膜具有良好的C轴择优取向生长特性,同时,衬底温度对它们的透射谱和荧光谱有着明显影响,所有薄膜都有大于86%的可见光透过率和陡峭的本征吸收边,但ZAO薄膜的光学透过率略低。Al掺杂导致了更宽的光学带隙,光致发光光谱显示ZnO具有较强的近带本征吸收峰和深能级发射峰,但Al掺杂使得深能级发射峰降低。随着衬底温度的升高,近带边吸收峰蓝移,与光学带隙Eg变化趋势一致。  相似文献   

10.
Aluminum-doped zinc oxide (ZnO:Al), abbreviated as ZAO, is a novel and widely used transparent conductive material. The ZAO powder was synthesized by chemical coprecipitation. The ZAO ceramic sputtering target materials were fabricated by sintering in air, and ZAO transparent conductive films were prepared by RF magnetron sputtering on glass substrates. XRD proved that such films had an orientation of (002) crystal panel paralleled to the surface of the glass substrate. The average transmittance of the films in the visible region exceeded 80%.  相似文献   

11.
New visible transparent, UV absorption, and high infrared reflection properties have been realized by depositing multilayer SiO2/ZnO: Al/CeO2-TiO2/SiO2 films onto glass substrates at low temperature by radio frequency magnetron sputtering. Optimum thickness of SiO2, ZnO: Al (ZAO) and CeO2-TiO2 (CTO) films were designed with the aid of thin film design software. The degree of antireflection can be controlled by adjusting the thickness and refractive index. The outer SiO2 film can diminish the interference coloring and increase the transparency; the inner SiO2 film improves the adhesion of the coating on the glass substrate and prevents Ca2+, Na+ in the glass substrate from entering the ZAO film. The average transmittance in the visible light range increases by nearly 18%-20%, as compared to double layer ZAO/CTO films. And the films display high infrared reflection rate of above 75% in the wavelength range of 10-25 μm and good UV absorption (> 98%) properties. These systems are easy to produce on a large scale at low cost and exhibit high mechanical and chemical durability. The triple functional films with high UV absorption, antireflective and high infrared reflection rate will adapt to application in flat panel display and architectural coating glass, automotive glass, with diminishing light pollution as well as decreasing eye fatigue and increasing comfort.  相似文献   

12.
Al-doped ZnO (ZAO) films were successfully deposited on the surface of common glasses by using low-temperature hydrothermal approach. In the reaction solution, the molar ratio of Al3+ to Zn2+ was 1∶100, the annealing temperature and time were 200 ℃ and 2-6 h, respectively. The structure of the thin films was identified by X-ray diffraction (XRD), the surface morphology and thickness of the thin films were observed by scanning electron microscopy (SEM), and the electrical performance of the thin films was measured by four-point probes. It was shown that the films with an average particle size of 27.53 nm had a preferential orientation along (002), Al3+ had replaced the position of Zn2+ in the lattice without forming the Al2O3 phase and its thickness was 20-25 μm. With the increased annealing time, the intensity of diffraction peaks was decreased, the film exhibited irregular surface morphology gradually, and the resistivity of ZAO films was increased. The lowest resistivity obtained in this study was 3.45×10-5Ω·cm.  相似文献   

13.
According to the basic infrared stealth mechanism of low infrared emissivity powders,the ZAO powder materials were prepared by liquid coprecipitation method,and the starting materials were Zn( NO3) 6H2O and Al( NO3) 39H2O. The process parameters were obtained,and the relationship between technology parameters and infrared emissivity was investigated. The temperature of thermal treatment,crystal structure and surface micrograph of ZAO powder was analyzed by the help of TG-DTA,XRD and SEM. The infrared stealth performance of ZAO powder was studied by IR-2 emissivity spectroscopy. Results showed that the infrared emissivity was the lowest when pH was 8. 0,calcination temperature was 1100 ℃,calcination time was 2 h,and the Al2O3doping content was 3% ( mass percentage) . The crystal structure of doped ZAO powder was lead-zinc, and there exists distortion of crystal lattice in nanocrystalline ZnO. The average particle size was 10 μm. The lowest infrared emissivity reached to 0. 61 at between 8 μm and 14 μm. It means that the ZAO powders will be excellent infrared stealthy materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号