首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
通过激光选区熔化技术制备了0Cr16Ni5Mo1马氏体不锈钢试样,研究了激光扫描速度和激光功率对成形试样致密度及微观组织的影响。结果表明:0Cr16Ni5Mo1粉末SLM优化工艺参数组合为激光功率214 W、扫描速度728 mm/s,试样的致密度最高。在较优工艺参数下,试样组织内部为板条状马氏体;工艺参数不合理时,试样内部δ铁素体较多。  相似文献   

2.
利用选区激光熔化成形技术于激光扫描速度800~1100 mm/s范围内制备了718HH塑料模具钢试样。采用光学显微镜、扫描电镜和半自动显微硬度计研究了激光扫描速率对选区激光熔化成形718HH塑料模具钢试样成形质量、显微组织和显微硬度的影响规律。研究表明,随着扫描速率的增加,成形件内部孔洞的数量增多、尺寸变大,且侧表面边界出现不同程度的裂纹;腐蚀后的成形件,其组织主要由马氏体组成,侧表面可以观察到典型的熔池形貌,且随着扫描速率的增大,熔池分布越来越不均匀;成形件具有较高的显微硬度,由于晶粒尺寸、残余应力以及孔洞裂纹等缺陷的综合影响,成形件的平均显微硬度随着扫描速率的增加呈现先升高后降低的趋势。当扫描速率为800 mm/s时,成形件内部几乎没有孔洞和裂纹等缺陷,成形组织致密,且具有良好的显微硬度,适用于718HH模具钢的选区激光熔化成形。  相似文献   

3.
《铸造》2018,(11)
以ZL114A铝合金粉末为研究对象,主要研究激光选区熔化(SLM)成形主要工艺参数如激光功率、扫描速度、扫描间距、铺粉厚度等对ZL114A成形试样致密度的影响。结果表明,SLM成形ZL114A合金试样的致密度随着激光功率的增大而增大;而随着扫描速度的增大,试样的致密度则呈现先增大后减小的趋势;当激光功率为450 W,扫描速度为2 000 mm/s,扫描间距为0.09 mm,铺粉厚度为0.05 mm时,试样致密度最大可达到99.92%,其SLM沉积态合金的常温平均抗拉强度为402.7 MPa,伸长率为6.0%。进一步引入能量密度模型,综合表征能量输入与试样致密度之间的作用关系,当能量密度在35~100 J/mm~3范围内,其致密度均可达99%以上。  相似文献   

4.
INCONEL系镍基高温合金选区激光熔化增材制造工艺研究   总被引:1,自引:0,他引:1  
研究了激光加工工艺参数对选区激光熔化工艺成形的Inconel 718合金试样的致密化行为、显微组织特征、硬度及摩擦磨损性能的影响。结果表明:当激光线能量密度(η)较低时,球化效应的出现使试样的致密度水平较低;在较高的线能量密度与合适的加工参数下,可获得接近完全致密的Inconel 718合金试样。同时,随着激光线能量密度的增加,SLM成形Inconel 718合金试样的显微组织经历了粗大的柱状树枝晶、聚集的枝晶、细长而均匀分布的柱状枝晶等变化过程。在优化工艺参数下,成形试样的显微硬度高达397.8 HV0.2;摩擦系数和磨损率较低,分别为0.40和4.78×10-4mm3/Nm;且试样内部显微组织均匀细小,摩擦试样的表面形成摩擦保护层,使试样的摩擦磨损性能较好。  相似文献   

5.
为提高激光选区熔化WC 12Co硬质复合材料的成形质量,采用有限元仿真软件Ansys 2021R1对SLM成形WC 12Co硬质复合材料过程的温度场进行数值模拟仿真研究,研究成形温度场的温度分布和成形工艺参数(激光功率、扫描速度、扫描间距和基板预热温度)对温度场的影响,为优化WC 12Co硬质复合材料成形提供试验依据。结果表明:激光功率增大,成形区域温度增大,位置点3的峰值温度从3507.47℃增大至3837.52℃;激光扫描速度增大,成形区域温度降低,位置点5的峰值温度从3592℃下降至2897℃,峰值温度下降695℃;扫描间距的增加使各扫描区域的温度有所降低,位置点3的峰值温度从3330℃逐渐降低至3123℃。在同一成形工艺参数下,激光扫描前一路径对后一路径有预热作用,随着扫描路径的增加,成形区域的温度呈现逐渐上升趋势。基板预热至120℃能够提高熔池的内部温度,减小成形件之间的温度差异,缩小温度梯度差。当激光功率增大时,熔池的宽度和深度随之增大;当激光扫描速度增大时,熔池的宽度先增大后减小,熔池的深度线性反向减小;当扫描间距增大时,熔池的宽度和深度均减小。模拟获得的温度场仿真结论能够大致反映成形试样的表面质量和合金粉末的熔化状态随成形工艺参数变化的趋势。  相似文献   

6.
目的 明确选区激光熔化钴铬合金中激光线能量密度、激光功率和激光扫描速度对成形件组织、性能的影响,探究优化工艺参数的方法。方法 基于ANSYS有限元软件模拟选区激光熔化过程中熔池尺寸的基础上,通过金相显微镜分析了熔池尺寸和显微组织,电子背散射衍射分析了晶粒尺寸,使用力学试验机和洛氏硬度计研究了试样的力学性能。结果 随着线能量密度降低,成形件的熔池尺寸、晶粒大小、冷却速度和力学性能降低。但在激光线线能量密度为0.242 J/mm的条件下,扫描速度为1 200 mm/s时成形试样的致密度为98.7%,抗拉强度为867 MPa,延伸率为6.5%,其力学性能均高于扫描速度为950 mm/s时成形的试样,与线能量密度更高的0.263 J/mm成形条件下250 W+950 mm/s的成形试样力学性能相近。结论 激光线能量密度是影响选区激光熔化钴铬合金熔池尺寸和组织性能的关键因素,但熔池尺寸与激光线能量密度没有线性关系。相同的线能量密度下,增加激光扫描速度,有利于获得大的熔池尺寸和冷却速度,提高成形件的致密度和降低晶粒尺寸,最终使成形件力学性能提高。  相似文献   

7.
利用激光选区熔化成形技术(selective laser melting, SLM)对AlSi10Mg的成形进行了工艺研究,对不同激光工艺参数的材料致密化行为及显微组织特征进行了研究,分析了熔池底部气孔形成机理,对成形态和热处理态试样进行力学性能测试。结果表明:激光能量密度过高或过低均不能得到最佳致密度,当激光功率350 W,激光扫描速度1 800 mm/s时,致密度达99.9%。选用最佳工艺参数下成形态试样的抗拉强度达473 MPa,屈服强度达289 MPa,远优于铸件标准。在270℃保温2 h退火制度下,过饱和固溶在α-Al中的Si元素析出,固溶强化的作用减弱,晶粒粗化,抗拉强度及屈服强度均下降。伸长率和断面收缩率分别提高了14.5%和50.7%。  相似文献   

8.
为了探究选区激光熔化(SLM)成形ZL114A合金的可行性,研究SLM成形工艺参数对ZL114A铝合金的熔池形貌、表面品质和润湿角的影响。结果表明,扫描速率一定时,熔池熔宽随激光功率增大而增大;线能量密度相等,熔宽也相等。扫描速度为2 500 mm/s,375~475 W下熔道轨迹的连续性和延展性最好,球化等缺陷也较少。确定激光功率为450 W,扫描速度为2 500 mm/s,扫描间距为0.09 mm,层厚为50μm时,润湿角小,熔池高度较小,润湿性好,成形件致密度达到99.94%。  相似文献   

9.
本文采用激光选区熔化技术制备了高致密度Inconel 718合金试样,研究了工艺参数(激光功率,扫描速度)对合金试样致密度的影响规律,分析了孔隙缺陷的形成原因,对比研究了微小孔隙缺陷存在条件下的拉伸性能变化,并比较了热处理对不同致密度合金力学性能影响。实验结果表明:工艺参数的改变决定了激光与粉末相互作用的模式,在较高激光功率、低扫描速度条件下发生了“匙孔”模式,气孔较多,致密度降低;当功率减小或者扫描速度增大会由“匙孔”模式向“热传导”模式转变,气孔较少,致密度会升高;但是当激光功率过小或者扫描速度过大时产生未熔合孔隙缺陷,使得材料的致密度出现大幅度减小的现象。拉伸测试结果表明,激光选区熔化成形Inconel 718合金的强度并不会随着致密度的增大呈严格单调增大的变化趋势,微小孔隙缺陷的形貌、数量和尺寸也会对拉伸性能产生影响。SIDA热处理可以大幅提高激光选区熔化成形Inconel 718合金的显微硬度及抗拉强度,但塑性呈显著降低。  相似文献   

10.
研究激光功率和扫描速度对激光选区熔化(SLM)成形纯镍的熔覆道特征、致密化行为和表面粗糙度的影响规律。结果表明,在一定范围内提升激光功率并降低扫描速度,可成形出连续、规则、光滑的熔覆道,这有助于抑制SLM成形过程中孔隙、球化等缺陷的形成。当扫描速度为900 mm/s、激光功率为255~275 W时可获得最佳成形工艺窗口,此时,试样相对密度为99.16%,抗拉强度为(360±2.747) MPa,上表面和侧表面的粗糙度分别为(2.88±2.23)μm和(14.98±0.69)μm。  相似文献   

11.
利用“球化效应”激光扫描制备球形Ti粉的研究   总被引:1,自引:0,他引:1  
利用“球化效应”,在SLS设备上探索将异形Ti粉转化为高性能球形粉末的可行途径。通过系统地改变激光功率、扫描速度,以及选取合适的激光扫描间距,探明了形成“球化效应”的工艺条件,并在激光功率为600W,扫描速度为30mm/s时,获得了较为理想的球形Ti粉。通过对球化过程进行理论分析,得出了选取激光扫描制备球形Ti粉工艺参数的准则。  相似文献   

12.
多组分铜基金属粉末选区激光烧结致密化机理   总被引:15,自引:2,他引:15  
研究了选区激光烧结专用多组分铜基金属粉末(组分包括纯Cu,预合金CuSn,CuP)的烧结性能.结果表明,通过合理控制激光工艺参数(特别是激光功率和扫描速率),能顺利实现粉末烧结成形,且无明显的"球化"效应和翘曲变形.扫描电镜和X射线衍射分析证实,此组粉末体系的激光烧结是基于液相烧结机制,其中熔点较低的CuSn充当粘结金属,熔点较高的Cu充当结构金属;而添加元素P则起稀释剂的作用,能避免Cu颗粒表面氧化.研究了粉末体系中粘结金属含量对粉末烧结致密化和烧结件微观组织的影响.结果表明,在一定范围内粘结金属含量的提高有利于改善烧结致密度;但若粘结金属过量,则会因"球化"效应而降低致密度.  相似文献   

13.
研究了分层厚度对选区激光熔化(SLM)技术成形Ti-5Al-2.5Sn(TA7)钛合金试样致密度、显微组织和力学性能的影响规律。结果表明:在激光功率和扫描间距一定的条件下,当分层厚度≤40 mm时,致密度随激光体能量密度的下降不断提高;当分层厚度40 mm时,致密度则随激光体能量密度的下降先升高后降低。随分层厚度的增大和扫描速率的降低,SLM成形过程中的冷却速率逐步下降,当冷却速率低于6.8×10~7K/s时,显微组织由针状马氏体α′逐渐向岛状α_m转变。通过优化工艺参数,在所有分层厚度(20~60 mm)下均能成形致密的TA7试样,其显微硬度、屈服强度和断裂强度超越铸件和锻件;且当分层厚度≤40 mm时,韧塑性超越铸件,达到锻件水平。成功探索出能够兼顾TA7样品成形效率、冶金质量及力学性能的优选分层厚度及SLM工艺参数组合。  相似文献   

14.
采用激光选区熔化技术制备Ti6Al4V钛合金试样,研究了激光加工工艺参数对Ti6Al4V试样致密化行为、显微组织特征及力学性能的影响。利用金相显微镜、万能试验机等测试手段对激光选区熔化成形试样进行显微组织及综合力学性能分析。结果表明,随着激光功率由360 W提高到400 W,不同激光扫描速度下的试样平均致密度由85. 3%提高到94. 5%,致密度显著提高。随激光能量密度提高,孔隙率明显降低且针状马氏体α'相分布均匀,塑性和强度更好。选用最优工艺参数(功率400 W,扫描速度2 100 mm/s),试样抗拉强度为1 159 MPa,屈服强度为1 008 MPa,均高于锻件标准。经800℃保温2 h退火处理后,断后伸长率和断面收缩率分别提高2. 26倍和2. 68倍,增长幅度较大。α'相和β相均分解为α+β相,晶粒粗化使晶粒内部滑移变形受晶界抑制作用减弱,最终导致材料强度下降而塑性明显提高。  相似文献   

15.
利用选区熔化成型技术(SLM)制备了316L不锈钢试样。通过正交实验法研究了工艺参数对试样致密度的影响,利用扫描电镜(SEM)观察了试样组织缺陷,最后用金相显微镜观察试样表面的组织结构,同时验证试样的致密度。结果表明,工艺参数对试样致密度的影响顺序从大到小依次为:扫描间距、激光功率、扫描速度。体能量密度在小于52.33 J/mm~3时,致密度随着体能量密度增大而增大;体能量密度在大于52.33 J/mm~3时,致密度变化不明显,维持在94.09%~95.91%。由扫描间距过低造成的体能量密度过低会使试样表面出现行列式分布的孔洞,在一定范围内调高激光功率和调低扫描速度能有效减缓孔洞数量。试样组织相为单项奥氏体,试样致密度越大,孔洞越少。  相似文献   

16.
采用HL5000型5 kW CO2激光器对E36高强船板钢试样进行焊接。通过改变激光功率和激光扫描速度等参数,提高E36高强船板钢的焊接质量。研究结果表明:激光焊接后热影响区的硬度最高;当功率不变,扫描速度在一定范围内增加时,焊缝区组织变得愈发细小,硬度值明显增大;当扫描速度不变,功率升高时,焊缝组织愈发粗大,硬度值有所减小;激光功率为3.1 kW时得到的焊缝成形系数最小,焊缝质量更好。  相似文献   

17.
采用激光选区熔化(SLM)工艺成形Cu6AlNiSnInCe仿金合金,研究不同SLM工艺参数组合对试样成形质量及其组织和性能的影响。结果表明,根据SLM成形试样的形貌特征可将激光功率和扫描速度的影响直观地划分为六个区域,分别是过熔区、完全熔化区、球化区、部分熔化区、严重球化区和未成形区。在完全熔化区时,激光能量密度达到156 J/mm3,仿金粉末在该参数区域完全熔化且熔池保持稳定的状态,试样密度较高、表面质量较好,表面粗糙度为9.2μm;SLM试样由基体α-Cu(Al Ni)相和弥散分布在基体中的析出δ-Cu41Sn11相组成;SLM试样的抗变形能力、显微硬度和耐腐蚀性能均优于铸造试样。  相似文献   

18.
潘露  张成林  江华  刘桐  王亮 《锻压技术》2019,44(11):103-109
为提高采用选区激光熔化技术制备316L不锈钢的致密度,设计影响致密度的主要工艺参数(激光功率和激光扫描速度)进行优化实验,并借助金相显微镜、扫描电镜分析了激光功率和激光扫描速度对孔隙、裂纹和气泡的影响。引入线能量密度,综合表征了工艺参数对致密度的影响,建立了适用于桌面式金属3D打印机的316L不锈钢致密度的预测数学模型。结果表明:激光功率和激光扫描速度对成形件的致密度具有显著的影响,线能量密度在175~250 J·m~(-1)范围内时,316L不锈钢成形件的致密度达到99. 95%以上;激光功率为200 W、激光扫描速度为900 mm·s~(-1)时,致密度达到99. 98%。  相似文献   

19.
采用金属选区激光熔化(SLM)成形技术打印制备了316不锈钢,通过扫描电子显微镜(SEM)对比研究了不同SLM工艺参数下的组织缺陷,并测试了其致密度。结果表明,SLM技术打印的316不锈钢组织缺陷主要表现为孔洞和裂纹。工艺参数对其组织缺陷和致密度存在着显著的影响:随着扫描功率的逐渐增大,孔洞缺陷明显减少,裂纹数量也极少,试样的致密度逐渐提高;然而,随着扫描速度和扫描间距的逐渐增大,孔洞及裂纹缺陷均增多,试样的致密度逐渐降低。316不锈钢较优的SLM工艺参数为S=0.05 mm,P=450 w和v=1 500~2 000 mm/s,该条件下组织中只存在极少量的裂纹,试样的致密度高达95.62%。  相似文献   

20.
实验采用进口GH4169镍基合金粉末,在10mm厚的Q235钢板上成形出30mm×30mm×15mm长方形块体,然后对成形块体进行金相组织、硬度和致密度分析。结果表明:沿着成型件成形高度的方向,组织结构交替重复出现,在裂纹附近出现较多的针状组织,在两烧结线之间出现较多的圆饼状组织;随激光功率和扫描速度的增加,显微硬度先增大后缓慢降低;随扫描速度和扫描间距的增加,成型件的致密度呈缓慢降低的趋势;随激光功率的增加,致密度呈缓慢的增加趋势,过大激光功率易引起裂纹、孔洞和翘曲等缺陷。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号