首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
利用Q345D连铸坯料(0.16C,0.26Si,1.40Mn,Nb+Ti0.040)制备Q420E钢,采用不同冷却速率和终冷温度的快冷工艺进行了厚30 mmQ420E钢高强度板试验,研究了冷却速率和终冷温度对其强度及韧性的影响。结果表明,随着冷却速率的增大和终冷温度的降低,铁素体晶粒尺寸减小,钢板强度和韧性提高,伸长率下降;当终冷温度控制在480~520℃之间,冷却速度控制在8~15℃/s之间时,组织为铁素体+珠光体+贝氏体组织,心部铁素体晶粒尺寸为7.2μm,钢板综合性能达到国标Q420E级别的要求,成功实现采用Q345D轧制30 mm厚的Q420E钢板的低成本生产,并为更高级别钢种的性能提升提供了依据,但轧制过程中部分钢板出现了心部偏析,以及快冷工艺对于钢板焊接性能的影响,仍然需要做进一步研究。  相似文献   

2.
对比了两种热循环(实际焊接与模拟单道次焊接)对Q690 TMCP钢粗晶区组织性能的影响。结果表明:模拟焊接热循环条件下,随热输入增大粗晶区组织分别经历了板条马氏体、回火马氏体、上贝氏体及粒状贝氏体转变,粗晶区冲击功随热输入能量的增大先增大后减小,峰值对应热输入20 kJ·cm-1;相同热输入能量的实际焊接试样粗晶区的冲击功变化趋势与模拟焊接试样相似,但数值均低。分析得出,实际焊接试样粗晶区中新生M-A组元导致了其冲击功相对更低。  相似文献   

3.
EH40钢板模拟焊接热影响区组织与性能   总被引:1,自引:0,他引:1  
利用热模拟技术及光学显微镜、透射电镜研究了在不同冷却时间(t8/5)条件下,大能量焊接EH40钢板模拟焊接热影响区组织和性能的变化规律.试验结果表明,模拟焊接热影响区组织主要是由粒状贝氏体、铁素体和珠光体组成;随着t8/5时间的增加,焊接热影响区的组织由粒状贝氏体和少量的准多边形铁素体组成转变为以粗大的等轴铁素体和珠光体为主,同时M-A岛的数量先增多后减少,尺寸逐渐增大,形状也由块状变为长条状,大颗粒状的M-A岛极易引起脆性解理断裂,导致冲击韧性下降;模拟焊接热影响区的冲击韧性总体水平较高,随着冷却时间(t8/5)的增加,韧性呈现出先降低后升高再降低的趋势.  相似文献   

4.
对转向架SMA490BW耐候钢在不同焊接线能量下进行了单丝MAG焊接试验,研究了线能量对接头显微组织与力学性能的影响。结果表明:焊接线能量在10~32 kJ/cm时,随着线能量的增加,焊缝金属中的晶内针状铁素体逐渐转变为条状或块状的铁素体,晶界侧板条铁素体尺寸增大;热影响区晶粒逐渐粗化,粒状贝氏体和晶界的先共析铁素体增加,当线能量达到32 kJ/cm时晶界的先共析铁素体几乎呈网状分布。不同线能量下,焊接接头拉伸试样均断裂于母材。随着线能量的增加,焊缝金属和热影响区的冲击功逐渐减小,对于焊缝金属、热影响区,线能量分别不超过25、32 kJ/cm时,其冲击功满足在-40℃下不小于27 J的要求。  相似文献   

5.
河钢集团采用氧化物冶金技术开发出了大热输入焊接用EH40船板钢,利用DIL805L淬火相变膨胀仪结合焊接热模拟技术,研究了EH40船板钢焊接热影响区(HAZ)连续冷却转变行为和不同冷却速度下HAZ的组织转变。同时,采用Gleeble-3800热模拟试验机对EH40船板钢进行焊接热模拟试验,并对其焊接HAZ力学性能进行了测定。焊接HAZ连续转变曲线(SHCCT)表明,当冷却速率≤1 ℃/s时,主要发生铁素体/珠光体转变;随着冷却速率增大至2 ℃/s时,贝氏体开始析出;当冷却速率在2~3 ℃/s时,发生铁素体/珠光体和粒状贝氏体转变;当冷却速率在5~10 ℃/s时,发生铁素体/粒状贝氏体转变;而且随着冷却速率增大,粒状贝氏体所占比例逐渐升高;当冷却速率增大至15 ℃/s时,开始出现板条状贝氏体;当冷却速率在30~100 ℃/s时,开始出现马氏体,并且马氏体所占比例逐渐升高。另外,焊接热模拟和冲击试验结果表明,经过200 kJ/cm热输入焊接热模拟后,EH40船板钢HAZ在-40 ℃下的平均冲击吸收能量为205 J,远大于国标要求的41 J。采用扫描电镜及配套的能谱仪对EH40船板钢焊接HAZ析出粒子进行了分析,结果表明(Ti,Mn,Si,Mg)Ox-MnS粒子可以作为形核质点促进焊接HAZ针状铁素体的形成,有效地提高了焊接HAZ的低温韧性。  相似文献   

6.
本文对某建筑工程用Q420D—Z15厚度60mm钢板对接接头埋弧焊焊接工艺进行研究,经过对不同的焊接热输入条件下,焊接接头的力学性能分析,发现Q420D钢板焊接接头低温冲击韧性对焊接热输入比较敏感,在较大焊接线能量的热输入条件下,焊缝金属产生粗大先共析铁素体,热影响区产生粗大粒状贝氏体,焊接接头低温冲击韧性降低较多。为使焊接接头各部位AKV-20℃夏比冲击韧性满足结构设计要求,应严格控制焊接热输入量。  相似文献   

7.
按中国船级社(China Classification Society即CCS)《材料与焊接规范》及相应船舶焊接检验标准要求,进行双丝、三丝FCB法12 mm厚(薄板) EH36热机械控制轧制(TMCP)供货状态钢板对接焊工艺认可试验。将工艺认可范围、焊缝外观成形、焊接接头力学性能等作为主要考量对象,分析FCB法薄板焊接的工艺性影响因素及高热输入对以TMCP态供货的EH36船用钢板焊接性影响。  相似文献   

8.
采用Gleeble 3800试验机模拟60 mm特厚高强韧桥梁钢板热影响粗晶区(CGHAZ)的焊接热循环,通过金相分析、硬度测试和示波冲击试验研究了焊接热输入量E、二次峰值温度TP2对CGHAZ显微组织与性能的影响。结果表明,单道次焊接热模拟工艺条件下,随着焊接热输入量的增大,一次粗晶区(CGHAZ)组织由细板条贝氏体(LB)逐渐转变成粒状贝氏体(GB),而冲击吸收能量和显微硬度值随着焊接热输入量的增大而减小;焊接热输入量不大于50 kJ/cm时,试验钢板具有较好的冲击性能,M-A组元粗化,冲击性能下降。在双道次焊接热模拟工艺条件下,E=30 kJ/cm时,冲击吸收能量随着TP2的增大呈现出先上升后下降的趋势;TP2=750 ℃时,冲击性能最差,表现出临界粗晶热影响区脆化。  相似文献   

9.
利用试验轧机试制20 mm和30 mm厚Q370qEW高焊接性耐候钢板,研究了钢的连续相转变行为、显微组织和力学性能,用热模拟和焊接试验评定了钢板的焊接性能。结果表明,当二开轧温度≤900℃,压下率≥50%,终冷温度≤564℃,可得到多边形铁素体加少量贝氏体;钢板屈服强度≥370 MPa,抗拉强度≥510 MPa,伸长率≥20%,-40℃冲击吸收能量≥100 J。焊接热模拟试验表明,当热输入量≤216 kJ/cm时,焊接热影响区由晶界铁素体、多边形铁素体和针状铁素体构成,其-40℃冲击吸收能量≥100 J。对20 mm厚钢板进行了热输入量为99 kJ/cm的双丝埋弧焊接,无预热和焊后热处理,焊接接头质量良好,接头抗拉强度为525 MPa,热影响区熔合线和熔合线+1 mm处的-40℃冲击吸收能量分别≥150 J和≥180 J。试验结果揭示了钢板良好的焊接性能。  相似文献   

10.
通过拉伸、冲击、硬度等力学试验和焊接接头微观组织分析,对新型EH40钢板大热输入量埋弧焊的焊接性和焊接接头性能进行了分析.试验结果表明,在100 kJ/cm,125 kJ/cm和200 kJ/cm热输入量条件下焊接,各检验位置的冲击性能均满足船级社规范的要求.除焊缝检验位置以外,焊接热影响区中粗晶区位置的冲击性能均低于其它检验位置.焊接过程中,热影响区没有出现明显的硬化和软化现象.粗晶区的显微组织由铁索体和珠光体为主变为以块状铁索体、贝氏体和魏氏体组织为主,同时存在少量的粒状贝氏体和黑色的M-A组元,随着焊接热输入量的增加,贝氏体和较为粗大的魏氏体组织所占比例增大.焊接热影响区中存在大量Ti和Nb的碳氮化合物的第二相粒子,这些第二相粒子有效地钉扎原奥氏体晶界,阻碍奥氏体晶粒的长大,从而改善了焊接热影响区的低温冲击性能.  相似文献   

11.
实验研究了Q420E厚100mm高强度厚板的TMCP工艺及其对组织性能的影响规律。结果表明,利用Nb、V、Ti复合微合金化成分设计,采用精轧开轧温度900℃,轧后冷却速度4.41℃/s的TMCP工艺或精轧开轧温度900~870℃的控制轧制工艺,均可使钢板性能达到标准要求。随着精轧开轧温度的降低,钢板屈服强度、抗拉强度和低温冲击韧性提高,伸长率变化不大;TMCP工艺与控制轧制工艺相比,钢板屈服强度、抗拉强度提高,伸长率降低幅度不大,但明显改善了钢板的低温冲击韧性。  相似文献   

12.
利用热模拟技术研究了两种成分船板分别通过传统热轧和热机械轧制生产,经高热输入焊接后热影响区各区域的性能,观察了组织形态和晶粒尺寸的变化.结果表明,完全重结晶区性能与母材无关,部分重结晶区和粗晶区性能与母材性能有直接关系.粗晶区是热影响区中性能最薄弱的部位.碳当量是决定组织形式和韧性的主要因素,采用TMCP工艺有利于提高高热输入焊接性能.低碳当量设计和TMCP工艺相结合是生产具有良好高热输入焊接适应性船板的合理方法.  相似文献   

13.
采用新工艺及传统工艺冶炼的两种海洋工程用正火态钢E36N进行热输入为200 kJ/cm的焊接热影响区热模拟实验,在-20℃的条件下检测焊接热模拟试样的冲击功值,在光学显微镜下观察其金相组织,在扫描电镜下观察冲击断口形貌以及夹杂物情况,研究在相同的大热输入条件下,两种冶炼工艺得到的E36N钢的熔合线附近的粗晶热影响区组织及其低温韧性。结果表明,传统工艺冶炼得到的E36N钢的焊接热模拟组织主要为贝氏体+少量铁素体,热影响区(HAZ)的低温韧性较差。新工艺冶炼得到的E36N钢的焊接热模拟组织为少量晶界铁素体、少量多边形铁素体及大量针状铁素体,HAZ具有良好的低温韧性。  相似文献   

14.
以250 mm Q235铸坯为研究对象,采用热机械控制工艺(TMCP)和再结晶控制轧制+加速冷却(RCR+ACC)两工艺进行了110 mm Q235C特厚板工业试制,对比了两工艺厚板的组织和性能。结果表明,两工艺钢板组织和性能均满足GB/T 700-88要求。TMCP工艺钢板表面组织为多边形先共析铁素体+贝氏体+少量珠光体,RCR+ACC工艺表面组织为铁素体+贝氏体;其余部位组织均为铁素体+珠光体,且晶粒度基本相当。与TMCP工艺相比,使用RCR+ACC工艺在奥氏体高温区轧制钢板,变形抗力低,有利于降低轧机负荷或实现低速大压下轧制,且省去TMCP工艺中间待温时间,实现了超厚板轧制过程的减量化。  相似文献   

15.
为了提高冷弯钢管焊接质量,采用不同工艺参数对其进行焊接,用金相、扫描电镜及硬度测试、冲击、冷弯和拉伸等方法研究了其焊接钢管的组织及力学性能.结果表明,焊缝区域没有裂纹、气孔等缺陷.试样焊缝中心组织为魏氏组织,热影响区的组织是魏氏组织、珠光体和先共析铁素体,母材为珠光体和铁素体.试样焊缝处的表面布氏硬度最高,热影响区居中.而母材最低.焊缝组织粗大,硬度最高,韧性最低.试样弯曲角随面能量呈山型变化趋势,只有面能量处于最佳值时,焊缝力学性能最佳.  相似文献   

16.
陈建超  郭潇  王智聪  赵金保 《轧钢》2022,39(1):94-97
针对河北普阳钢铁有限公司3 500 mm产线生产的25 mm 厚Q420qD桥梁板低温冲击性能不合的问题,通过对钢板化学成分、轧制工艺和金相组织的分析,发现精轧终轧温度过低,进入两相区轧制而形成沿晶界连续分布的铁素体网及混晶组织是导致钢板冲击不合的主要原因。通过降低Q420qD板坯出炉温度,以细化板坯的原始奥氏体晶粒,并提高精轧终轧温度到Ar3温度以上,避开两相区轧制,改善了钢板组织形态,使桥梁板低温冲击性能得到明显提高,满足标准要求。  相似文献   

17.
利用热轧机组轧制试验研究了热机械控制(TMCP)工艺及轧后辊道待温时间对双相不锈钢2205厚板综合性能的影响。结果表明,TMCP态与热轧退火态相比铁素体含量更高;抗拉强度和硬度提高较多;塑性、低温冲击韧性和耐点腐蚀性能相当。随着辊道待温时间的增加,铁素体含量不断减少,相界处锯齿状奥氏体增多并最终融合形成岛状奥氏体。同时材料的抗拉强度、硬度和冲击韧性先增大后减小,在150 s时达到最大;耐点腐蚀性能则逐渐下降。  相似文献   

18.
分析了正火处理对TMCP新型低温钢组织、力学性能及断裂机理的影响。结果表明:随着正火温度的增加,不完全正火处理试样的屈服强度和抗拉强度均降低,完全正火处理试样的则提高,断后伸长率和夏比V型缺口冲击吸收功的变化规律与其强度变化规律相反;920℃完全正火处理试样的综合力学性能最佳;不完全正火处理后TMCP试样组织中的针状铁素体逐渐消失,晶粒细化并伴随等轴化;860℃和920℃完全正火处理试样组织为等轴铁素体和珠光体,待正火温度增加至1 000℃时,组织晶粒粗化并出现魏氏体。完全正火处理试样的断裂形式由TMCP试样的准解理断裂变为韧性断裂。  相似文献   

19.
利用模拟程控热处理炉进行300 mm×300 mm截面Q355E钢锻件心部材料的模拟正火处理试验,通过光学显微镜、扫描电镜、拉伸和冲击试验机,研究模拟正火温度对厚截面风电法兰用Q355E钢锻件组织和性能的影响。结果表明,模拟正火温度由780 ℃升高至900 ℃,并经580 ℃回火后,材料-50 ℃冲击吸收能量呈现先增加后降低的趋势,铁素体平均尺寸由14.73 μm降低至12.07 μm又增大至15.02 μm,珠光体的平均尺寸从3.69 μm增大至10.51 μm;模拟正火温度为820 ℃和840 ℃时,铁素体和珠光体组织均匀细小,珠光体呈条状和近等轴状分布,-50 ℃冲击吸收能量为183.8~211.1 J,试样剪切断面率在50%以上。对于300 mm×300 mm截面Q355E钢锻件,可选择820~840 ℃正火处理,以获得优良稳定的低温冲击吸收能量。  相似文献   

20.
通过对火焰切割试样和机械加工试样焊接接头的抗裂性试验、拉伸试验、冲击试验、弯曲试验、显微硬度试验以及金相分析,研究了热切割热影响区对Q345E焊接接头组织和性能的影响.结果表明,火焰切割试样焊接接头的焊接热影响区比机械加工试样焊接接头的焊接热影响区宽,硬度低;两种焊接接头都具有良好的抗裂性能、冲击性能、拉伸和弯曲性能.组织大体相同:焊缝为先共析铁素体呈树枝状晶分布,热影响区为沿晶界析出的块状铁素体,母材为呈带状分布的铁素体+珠光体.所以,焊前直接采用火焰切割坡口的工艺可行.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号