首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用常规PID控制和基于模糊PID的智能控制两种控制方式对锻造温度进行了控制,并进行了42CrMoV钢机械曲轴锻件冲击性能和磨损性能的测试与分析。结果表明,与常规PID控制相比,智能控制获得的机械曲轴锻件冲击吸收功从64 J增大到72 J,增大了12.5%;智能控制获得的机械曲轴锻件磨损体积从31×10~(-3)mm~3减小到23×10~(-3)mm~3,减小了25.8%,曲轴的冲击性能和磨损性能得到明显提高。  相似文献   

2.
采用模糊PID(比例-积分-微分)控制的智能控制技术对6061铝合金锻压温度进行了控制,并进行了合金力学性能和磨损性能的测试与分析。结果表明,与常规PID控制相比,使用模糊PID智能控制能使合金抗拉强度增大28MPa,屈服强度增大33 MPa,室温20 min磨损体积减小13×10~(-3)mm~3(从36×10~(-3)减小到23×10~(-3)mm~3),合金强度和磨损性能得到提高。  相似文献   

3.
采用三种不同方式对AZ61镁合金锻造温度进行了控制,测试和分析了锻件的力学性能、磨损性能和显微组织。结果表明,锻造温度的模糊PID控制有助于细化锻压态AZ61镁合金晶粒,提高合金的强度和磨损性能。与无PID控制相比,模糊PID控制获得的锻态AZ61镁合金抗拉强度增大24 MPa(从290 MPa增加到314 MPa),屈服强度增大26 MPa(从185 MPa增加到211 MPa),磨损体积减小22×10~(-3)mm~3(从42×10~(-3)mm~3减小到20×10~(-3)mm~3),平均晶粒尺寸减小9.3μm(从17.4μm减小到8.1μm)。  相似文献   

4.
为了优化机械连杆的锻压工艺,提升机械连杆锻件的力学性能和耐磨损性能,分别采用常规PID控制和模糊PID控制方法对铝基复合材料机械连杆锻压过程进行控制,并对两种控制方式下锻压机械连杆的室温力学性能和耐磨损性能进行了测试与对比分析。结果表明:与常规PID控制相比,采用模糊PID控制时连杆抗拉强度和屈服强度分别增大了36和45 MPa,经20 min磨损试验后连杆的磨损体积减小42.3%。模糊PID控制方式显著优于常规PID控制,采用模糊PID控制的锻压机械连杆的力学性能和耐磨损性能均优于常规PID控制,有利于提高锻压机械连杆的综合性能。  相似文献   

5.
采用不同的等温锻造应变速率进行了机械盘件TC4钛合金的锻造成形,并进行了室温力学性能和耐磨损性能的测试和分析。结果表明:等温锻造应变速率对机械盘件TC4钛合金的力学性能和耐磨损性能产生明显影响;随等温锻造应变速率从6×10~(-4)s~(-1)增大到6×10~(-3)s~(-1),试样的抗拉强度先减小后增大,断后伸长率和磨损体积先增大后减小;与6×10~(-4)s~(-1)应变速率相比,采用6×10~(-3)s~(-1)应变速率的抗拉强度增大了15 MPa,断后伸长率减幅较小,减小了1.9%,磨损体积减小了3×10~(-3)mm~3,试样的力学性能和耐磨损性能均先下降后提高。机械盘件TC4钛合金的等温锻造应变速率优选为6×10~(-3)s~(-1)。  相似文献   

6.
采用机械振动辅助法进行了机械行业用新型铜合金Cu-15Ni-6Al-0.5V-0.3Sr的制备,并进行了显微组织、物相组成、力学性能和耐磨损性的分析。结果表明,该新型铜合金具有较佳的力学性能和耐磨损性,合金由α固溶体基体组成;与25℃相比,100、300、500℃时该铜合金的抗拉强度分别下降8、25、32 MPa;屈服强度分别下降11、24、33 MPa,冲击吸收功分别下降3、7、12 J;磨损体积分别增大1×10~(-3)、2×10~(-3)、4×10~(-3)mm~3。  相似文献   

7.
对AZ61Ce0.5镁合金机械外壳试样进行了常规锻造和多向锻造下的显微组织观察和耐腐蚀性能、耐磨损性能的测试与分析。结果表明:经多向锻造的镁合金机械外壳试样的晶粒得到细化,显微组织得到极大改善;腐蚀电位为-0.886 V,较常规锻造时正移了46 mV(-0.932→-0.886V);磨损25 min后磨损体积比常规锻造时减小27%(26×10~(-3)→19×10~(-3)mm~3),多向锻造试样的耐腐蚀性能和耐磨损性能均优于常规锻造。  相似文献   

8.
采用改变旋转速度对超高强度钢进行了FSP改性研究。进行了显微组织、力学性能、耐磨损性和耐腐蚀性的分析。结果表明:随旋转速度从300r/min提高至900r/min,FSP改性超高强度钢的晶粒先细化后粗化,力学性能、耐磨损性和耐腐蚀性能先提高后降低,抗拉强度从734 MPa先增加至926 MPa再降低至858 MPa;磨损体积从83×10~(-3)mm~3先减小至41×10~(-3)mm~3再增加至59×10~(-3)mm~3;中性盐雾腐蚀240h后的质量损失率从10.4%先减小至2.7%再增大至6.5%。旋转速度优选600 r/min。  相似文献   

9.
采用不同的锻压力、启锻时间和保压时间进行了6063铝合金的铸锻复合成形,并进行了室温力学性能和耐磨损性能的测试和分析。结果表明,随锻压力从70 MPa增加到150MPa、启锻时间从2 s增加到6s、保压时间从5 s增加到35 s,试样的力学性能和耐磨损性能均先提升后下降。与70 MPa锻压力相比,采用130 MPa锻压力时合金的抗拉强度增大42 MPa、磨损体积减小18×10~(-3)mm~3;与2 s启锻时间相比,采用6 s启锻时间时合金的抗拉强度增大17 MPa,磨损体积减小7×10~(-3)mm~3;与5 s保压时间相比,采用25 s保压时间时合金的抗拉强度增大29 MPa,磨损体积减小13×10~(-3)mm~3。6063铝合金的铸锻复合成形工艺参数优选为:130 MPa锻压力、4s启锻时间和25 s保压时间。  相似文献   

10.
采用常规PID(比例-积分-微分)控制和基于模糊自适应PID控制的智能控制方式分别进行了汽车齿圈40Cr Ni Mo钢连铸浇注温度的控制,并进行了试样的耐磨损性能测试与分析。结果表明:智能控制可以明显提高试样的耐磨损性能。与常规控制相比,智能控制试样的室温磨损体积从16.55×10~(-3)mm~3减小到11.38×10~(-3)mm~3,减小了31.24%;高温磨损体积从36.99×10~(-3)mm~3减小到20.00×10~(-3)mm~3,减小了45.93%。  相似文献   

11.
采用不同工艺参数进行了新型含钒机械轴承钢锻造,并进行了锻造工艺优化前后的冲击性能和耐磨损性能的测试与分析。结果表明:与工艺优化前相比,工艺优化后的冲击韧度增大了7.9 J/cm~2(32.8→40.7 J/cm~2),磨损体积减小了6.8×10~(-3)mm~3(18.4×10~(-3)→11.6×10~(-3)mm~3),新型含钒机械轴承钢试样的冲击性能和耐磨损性能均得到显著提高。新型含钒机械轴承钢的优化锻造工艺为1140℃始锻温度,900℃终锻温度,拔长比4。  相似文献   

12.
采用不同的始锻温度和终锻温度进行了建筑用铝基复合材料的锻造成形,并进行了耐磨损性能和力学性能的测试与分析。结果表明:随始锻温度从450℃提高至550℃,终锻温度从350℃提高至430℃,建筑用铝基复合材料的磨损体积先减小后增大、抗拉强度先增大后减小、断后伸长率变化不大,耐磨损性能和力学性能呈先提升后下降的趋势。当始锻温度为500℃时,建筑用铝基复合材料的磨损体积和抗拉强度分别较450℃始锻时减小了17×10~(-3)mm~3和增大了37 MPa;当终锻温度为410℃时,建筑用铝基复合材料的磨损体积和抗拉强度分别较350℃终锻时减小了15×10~(-3)mm~3和增大了30 MPa。建筑用铝基复合材料的始锻温度和终锻温度分别优选为500和410℃。  相似文献   

13.
对Mg-8Al-0.6Zn-0.4V和Mg-8Al-0.6Zn-0.5Zr两种镁合金进行了常规铸造和模糊PID控制铸造下的力学性能和磨损性能的测试与分析.结果 表明:与常规铸造相比,模糊PID控制时Mg-8Al-0.6Zn-0.4V合金的抗拉强度、屈服强度分别增大22、23MPa,断后伸长率仅减小0.3%,磨损体积减小...  相似文献   

14.
在不同锻压温度进行了6061-0.25Mo0.25V铝合金花盘零件的锻压试验,并进行了室温及高温耐磨损性能的测试与分析。结果表明:随始锻温度从370℃增至490℃或终锻温度从290℃增至410℃,零件在室温及高温的耐磨损性能均表现为先提高后下降的变化,但是始锻温度和终锻温度对零件高温耐磨损性能的影响更为显著。与370℃始锻相比,460℃始锻时零件室温和高温磨损体积(室温12×10~(-3)mm~3,高温23×10~(-3)mm~3)分别减小43%、56%。与290℃终锻相比,350℃终锻时零件室温和高温磨损体积(室温12×10~(-3)mm~3,高温23×10~(-3)mm~3)分别减小48%、60%。零件的始锻温度和终锻温度分别优选为460℃和350℃。  相似文献   

15.
采用不同的温度对42CrNiMo汽车连杆进行了锻造,并进行了锻件拉伸性能、冲击性能和耐磨损性能的测试与分析。结果表明,随着始锻温度从1050℃增至1200℃或终锻温度从760℃增至960℃,汽车连杆的抗拉强度、屈服强度、断后伸长率、冲击吸收功均先增大后减小,磨损体积先减小后增大。优化的连杆始锻温度为1180℃、终锻温度为860℃,此时连杆的抗拉强度936 MPa、屈服强度788 MPa、断后伸长率14.8%、冲击吸收功47J、磨损体积26×10~(-3)mm~3。  相似文献   

16.
利用不同工艺铸造了汽车空调压缩机轴用新型20Cr VCe钢试样,并进行了试样的力学性能和磨损性能的测试与分析。结果表明:搅拌铸造能显著提高试样的强度和磨损性能。随浇注时机械振动频率的增大,试样的强度和磨损性能均先提高后下降。与常规铸造相比,采用40 Hz机械振动频率的搅拌铸造,试样的抗拉强度增大40 MPa,屈服强度增大44 MPa,断后伸长率减小0.5%,磨损体积减小13.2×10~(-3)mm~3。铸造工艺优选为:浇注时40 Hz机械振动频率的搅拌铸造。  相似文献   

17.
采用不同的浇注温度和加压压力对汽车缸盖用新型铝合金进行了低压铸造试验,并对试样进行了高温摩擦磨损性能和力学性能的测试和分析。结果表明:随浇注温度的升高和压力的增大,试样的磨损体积和断后伸长率先减小后增大,抗拉强度先增大后减小,高温摩擦磨损性能和强度均先提升后下降。与690℃浇注相比,710℃浇注时的磨损体积(21×10-3mm3)减小43.2%,抗拉强度(249MPa)增大16.9%,断后伸长率变化幅度较小;与0.02 MPa压力相比,0.03 MPa压力铸造时的磨损体积(21×10-3mm3)减小25%,抗拉强度(249MPa)增大2.9%,断后伸长率变化幅度较小。汽车缸盖用新型铝合金的铸造工艺参数优选为:710℃浇注温度、0.03 MPa压力。  相似文献   

18.
对42CrMoSrIn钢新型机床主轴进行了传统PID控制和模糊-PID控制,并进行了室温磨损性能、高温磨损性能和显微组织的测试、对比和分析。结果表明:与传统PID控制相比,经模糊-PID控制后的试样室温磨损体积和高温磨损体积分别减小了29.41%、44.44%,试样的室温磨损性能和高温磨损性能均提升。模糊-PID控制的效果优于传统PID控制,可以提高机床主轴的质量。  相似文献   

19.
采用不同的浇注温度和保压比压对Al-10Si-3Cu-0.5V-0.2Ti铝合金机械外壳试样进行了压力铸造试验,并进行了耐磨损性能和耐腐蚀性能的测试与分析。结果表明:随浇注温度和保压比压的升高,试样的磨损体积先减小再增大,腐蚀电位先正移后负移,耐磨、耐腐蚀性能均表现为先提升再下降。在720℃浇注温度和60MPa保压比压下,试样的磨损体积最小,腐蚀电位最正。在这个条件下磨损体积为22×10~(-3)mm~3,腐蚀电位为0.846V。  相似文献   

20.
使用不同的浇注温度、压射比压和型腔温度进行了机械壳体用Mg-Al-Zn-Ti合金试样的压铸试验,并进行了磨损试验与分析。结果表明:当浇注温度从660℃增大到740℃,压射比压从35MPa增大到75MPa时,合金的耐磨性均先提高后下降;当型腔温度从150℃增大到250℃时,合金耐磨性先提高后基本不变。与660℃浇注相比,浇注温度700℃时合金的磨损体积(30.5×10~(-3)mm~3)减小33.7%;与压射比压35MPa相比,压射比压65MPa时合金的磨损体积(30.5×10~(-3)mm~3)减小31.2%;与型腔温度150℃相比,型腔温度200℃时合金的磨损体积(30.5×10~(-3)mm~3)减小35.4%。合金的浇注温度、压射比压和型腔温度分别优选为700℃、65MPa、200℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号