首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为制备易回收、可生物降解的染料吸附材料,将聚乳酸(PLA)、壳聚糖(CS)和四氧化三铁(Fe3O4)共混溶于三氟乙酸(TFA)溶液中,通过静电纺丝技术制备得到PLA/CS/Fe3O4超细纤维膜,研究了PLA/CS/Fe3O4超细纤维膜的表面形貌、孔隙结构、表面元素及其对酸性蓝MTR的吸附动力学和吸附机制。结果表明:PLA/CS/Fe3O4超细纤维内外均有孔隙结构,纤维的直径为(158±81) nm,比表面积为14.7 m 2/g,平均孔径为15.6 nm,且共混静电纺丝并未改变CS中C—NH2和Fe3O4中Fe元素的化学状态;PLA/CS/Fe3O4超细纤维膜对酸性蓝MTR的平衡吸附量为156 mg/g,吸附动力学实验数据与Lagergren准二级吸附动力学模型吻合较好,表现为化学吸附机制。  相似文献   

2.
为了提高聚乳酸(PLA)的韧性,分别使用具备可降解特性的不同分子质量聚乙二醇(PEG)和PLA熔融共混,制得不同相对分子质量PEG的PLA/PEG共混材料。通过熔喷工艺,制备得到具有良好韧性的超细纤维熔喷非织造材料。系统探究了不同相对分子质量PEG对PLA材料的断面形貌、流动性能、热性能、结晶形貌以及对PLA熔喷非织造...  相似文献   

3.
为拓展聚乳酸(PLA)超细纤维非织造材料在医用敷料领域的应用,以聚乙二醇(PEG)、十二烷基硫酸钠(SDS)共混改性PLA为原料,利用熔喷非织造成形方法制备PLA/PEG/SDS超细纤维材料,并对其结构和导液特性进行测试与分析。结果表明:随着SDS质量分数由0%增大到1.5%,PLA/PEG/SDS共混聚合物的冷结晶温度从116.02℃降至93.58℃(降低约23.9%),熔融温度从164.10℃降至150.58℃(降低约8.9%);材料中超细纤维(纤维直径<5μm)的数量占比从0%增大至57%,同时5μL水的浸没时间从0.24 s降低至0.06 s,液体扩散面积从36.05 cm2增大至78.26 cm2,吸水速率从4.38%/s提升至9.15%/s,液态水分扩散速率从2.21 mm/s提升至8.34 mm/s,表明液体导液特性有所提升,可用做敷料和补片等医用护理材料的基材。  相似文献   

4.
采用静电纺丝法制备了纤维表面和内部均具有孔隙结构的超细聚乳酸(PLA)纤维,研究PLA溶液的质量分数、二氯甲烷/N,N-二甲基乙酰胺(DCM/DMAC)溶剂质量比、电压、纺丝液流量等参数对纤维表面孔隙覆盖率及孔隙大小的影响。结果表明,PLA溶液质量分数和DCM/DMAC溶剂质量比对纤维表面孔隙结构的影响较大,纺丝电压的影响次之,纺丝液流量的影响最小。在PLA溶液质量分数为7%、DCM/DMAC质量比为10∶1、电压为16 kV、流量为1 mL/h的条件下,制备得到的PLA多孔纤维膜具有高效低阻的过滤性能,其对直径为75 nm的氯化钠气溶胶颗粒的过滤效率达99.964%,压降仅为197.9 Pa。  相似文献   

5.
为了改善聚乳酸(PLA)纤维的染色性能,采用分散蓝79对聚乳酸/聚酮(PLA/PK)共混纤维染色,探究了染色温度、时间、pH值等因素对染色性能的影响,分析了染色动力学与热力学行为。研究得出分散蓝79对PLA/PK共混纤维染色的优化工艺:染色温度为110 ℃,染色时间为40 min,pH值为5。结果表明:纤维染色K/S值随PLA/PK共混纤维中PK含量的增加而略有提升,共混纤维染色的耐摩擦色牢度和耐皂洗色牢度保持在3级以上;与纯PLA纤维相比,分散蓝79染料在PLA/PK共混纤维(4%PK)上的平衡吸附量增大,半染时间缩短,扩散系数增大,具有比聚乳酸更好的染色性能;通过拟合计算发现分散蓝79染料对纯PLA纤维、PLA/PK共混纤维(4%PK)的吸附等温线为Nernst与Langmuir复合型曲线。  相似文献   

6.
为了改善全球范围内日趋严重的印染废水污染问题,通过仿蜘蛛纺丝静电纺技术,对聚乳酸(PLA)、氧化石墨(GO)和多巴胺(DA)进行共混纺丝,再将DA氧化聚合成PDA,制备PLA/GO/PDA纳米纤维膜,并对纳米纤维膜的微观结构、热性能、力学性能、亲水性与吸附性进行表征。试验结果表明:相对于纯PLA纳米纤维膜,PLA/GO多孔纳米纤维膜平均孔径减小,孔总数量增加;纳米纤维断裂强度、断裂伸长率提高,也更加均匀。加入DA后,纳米纤维的孔径分布更密集,断裂强度大幅增加,断裂伸长率和纯PLA纳米纤维相近。DA经氧化聚合成PDA后得到PLA/GO/PDA纳米纤维膜。纳米纤维膜表面附着一层聚多巴胺,为亲水性材料。基于PLA/GO/DA纳米纤维膜制备的PLA/GO/PDA纳米纤维膜优于基于PLA/GO纳米纤维膜所制备的PLA/GO/PDA纳米纤维膜,其24 h的吸附率高达98.81%。  相似文献   

7.
以聚乳酸(PLA)为基体,选择芦荟苷(LHG)作为天然抗菌活性成分,通过熔融共混制得PLA/LHG共混切片。以共混切片为原料进行熔融纺丝制得PLA/LHG共混纤维,对其微观形貌、力学性能和抑菌性能等进行检测分析。试验结果表明:LHG会使PLA更难结晶;除LHG质量分数为2.0%的共混纤维外,PLA/LHG共混纤维的力学性能均优于纯PLA纤维,当LHG质量分数为0.5%时,共混纤维的强度最高,为391 MPa,较纯PLA纤维大42 MPa;但随着LHG质量分数的增加,共混纤维的力学性能逐渐降低;PLA/LHG纤维具有较好的抗菌性能,当LHG质量分数为2%时,共混纤维对大肠埃希菌和金黄葡萄球菌的抑菌率分别为80.2%和84.4%。  相似文献   

8.
《印染》2015,(10)
在优化的转移印花条件下,改变墨水中染料质量浓度,测定转印固色后20 D尼龙面料的K/S值和色差,确定墨水中染料浓度饱和值。结果表明,酸性红和酸性黄染料墨水饱和质量分数为19%,酸性蓝和酸性黑染料墨水饱和质量分数为18%,染料利用率在73%~76%,固色率在78%~85%,4种染料对纤维的上染量均达到20 D尼龙66末端氨基饱和值。  相似文献   

9.
通过在聚乳酸纺丝中添加抗菌剂三氯卡班(TCC),采用静电纺丝技术制备了一种具有抗菌活性的聚乳酸超细纤维,利用扫描电子显微镜(SEM)分析溶剂的组成及配比、TCC质量分数等对纤维微观形貌的影响。研究了掺入抗菌剂的量对抗菌性能的影响。结果表明:当纺丝液所用溶剂为二氯甲烷/聚乙二醇(400目)时TCC的溶解性及TCC/PLA的成丝情况均较好,所用溶剂配比为CH2Cl2:PEG(400)=9:1(V:V);当聚乳酸纺丝液中TCC的质量分数从0.1%增加到0.6%时,纤维形态分布基本保持不变,超细纤维的直径稍有增加;所用抗菌剂TCC质量分数为0.5%时,制得的抗菌纤维对金黄色葡萄球菌和大肠杆菌的抑菌率分别为98.6%和94.2%。  相似文献   

10.
为制备具有防水透湿性能的超细纤维膜,在聚氨酯(PU)纺丝液中添加疏水二氧化硅(SiO2)颗粒,制备PU/SiO2复合超细纤维膜。通过软件模拟分析了纺丝液浓度和纤维膜厚度对纤维膜孔径的影响,根据静态水接触角、静水压、透气率和透湿率分析了复合超细纤维膜的防水透湿性能,并讨论了不同质量分数SiO2对PU/SiO2复合超细纤维膜防水透湿性能的影响。结果表明:复合纤维膜的孔径随着纺丝液浓度的增加而增加,随着纤维膜厚度的增加而减少;当SiO2质量分数为9%、PU质量分数为18%时,PU/SiO2复合纤维膜的静态水接触角达到131°,静水压为6.4 kPa,透气率为33.4 mm/s,透湿率为8.065 kg/(m2·d);该条件下复合纤维膜断裂应力为4.16 MPa,断裂伸长率为184%,与纯PU膜相比具有较好的尺寸稳定性。  相似文献   

11.
为赋予聚乳酸(PLA)纤维高效的抗菌性能,采用熔融共混纺丝法分别制备了不同质量配比的二氧化钛接枝银纳米介孔微球(TiO2-Ag)/PLA纳米复合纤维和一定组成的TiO2/PLA纳米复合纤维,并对2种纤维的结构、热性能和抗菌性能等进行表征和分析。结果表明:当TiO2-Ag和TiO2这2种纳米粒子添加质量分数不超过3%时,可在PLA基体中较均匀地分散;2种粒子的加入均不影响PLA的玻璃化转变温度和结晶结构,但会使其熔融温度和热稳定性下降,加入质量分数为3%的TiO2后,导致PLA的结晶温度略有下降;随着TiO2-Ag质量分数的增加, TiO2-Ag/PLA纳米复合纤维对金黄色葡萄球菌和大肠杆菌的抑菌率不断增加;添加相同量的2种纳米粒子时,TiO2-Ag/PLA复合纤维对2个菌种的抑制效果明显优于TiO2/PLA复合纤维。  相似文献   

12.
PLGA/PLA共混纳米纤维膜的结构与性能   总被引:1,自引:0,他引:1       下载免费PDF全文
刘华  王曙东 《纺织学报》2012,33(2):21-25
 为制备组织工程支架材料,以具有优异生物相容性的PLGA和PLA为原料,通过静电纺丝法制备PLGA/PLA共混纳米纤维膜。通过扫描电镜、流变仪、TG-DSC热分析和电子强力仪测定共混纳米纤维膜的形貌结构、微细结构和力学性能。结果表明:通过静电纺丝法可成功制备PLGA/PLA共混微、纳米级纤维膜。随着PLA共混比例的提高,纺丝液的黏度逐渐提高,使得纳米纤维的直径增大、分布均匀、孔径增大、孔隙率减小;热分析结果表明随着PLA共混比例的增大,支架的结晶度和结构稳定性提高;随着PLA共混比例的增加,支架的断裂强度增加,伸长减小;可通过调节PLGA和PLA的共混比例达到调控支架材料的结构与性能,以满足不同组织工程支架的要求。  相似文献   

13.
为赋予聚乳酸(PLA)纤维高效的防紫外线性能和抗菌性能,以ZnO为功能粒子,采用熔融共混法制备了不同质量配比的PLA/ZnO共混物,对共混物的形貌结构、热性能、防紫外线性能和抗菌性能进行表征,选用最佳质量配比的共混物进行熔融纺丝制备PLA/ZnO纤维。结果表明:当ZnO母粒质量分数为5%时(ZnO质量分数为0.85%),ZnO粒子在PLA基体中分布均匀,PLA/ZnO共混物热稳定性较好,防紫外线和抗菌性能优异,紫外线防护系数达到663,且对大肠杆菌和金黄色葡萄球菌的抑菌率在99%以上;该比例的共混物具有良好的可纺性,制得的PLA/ZnO纤维的结晶度达30%以上,纤维的强度符合织造要求,制备的PLA/ZnO织物紫外线透过率低于30%,对大肠杆菌和金黄色葡萄球菌的抑菌率也高达99%,且织物水洗10次后抑菌率不变。  相似文献   

14.
为增强增韧聚乳酸纤维,采用聚酰胺(PA)与聚乳酸(PLA)制备了PLA/PA 共混纤维,并对其热学性能、结晶、热稳定性、PA 的分散性以及PLA/PA共混纤维的力学性能进行了研究。研究结果表明:PA的加入对PLA 的玻璃化转变温度及熔融温度没有显著影响,但改善了PLA的结晶行为,结晶度提高了51.6%;PLA 热稳定性随着PA 含量的增加而提高;PA在PLA 中分散均匀;随着牵伸倍数的增加,PLA/PA 共混纤维的取向度提高,力学性能得到改善,当牵伸倍数从1.5增加到3.0 时,取向度提高了30.88%,同时纤维的断裂强度提高了48.58%;当PA 质量分数为1%和20%时,PA/PLA共混纤维的断裂强度分别提高了8.6%和25%,断裂伸长率分别提高了10.9%和55.9%。  相似文献   

15.
为得到一种可捕集废水中重金属离子的耐水型过滤膜新材料,将β-环糊精(β-CD)与聚丙烯酸酯(PA)共混,通过静电纺丝技术制备了β-CD/PA纳米纤维膜。利用扫描电子显微镜(SEM)表征了所制纳米纤维的表面形貌,探讨了β-CD质量分数对其表面形貌的影响,并研究了其对铜、铁等重金属离子的捕集能力。通过捕集前后的SEM照片初步分析了其捕集机制。结果表明:PA膜在40 min后的吸水率维持在8%,具有良好的耐水性;当PA质量分数为10%时,纳米纤维膜中单丝间的相互黏结情况随β-CD质量分数的增大有显著改善;PA质量分数为10%,β-CD质量分数为50%(相对于PA)时,纳米纤维膜对铜、铁离子的捕集量可分别达到82.0、219.5 mg/g;捕集铜离子后的纳米纤维膜表面有明显的离子富集。  相似文献   

16.
为了探讨聚氯乙烯(PVC)/聚偏二氯乙烯(PVDC)共混膜的制备及性能,选用N,N-二甲基乙酰胺(DMAC)为溶剂,采用相转化法制备PVC/PVDC共混膜,研究PVC/PVDC共混体系的相容性、共混膜表面形貌和截面形貌,以及共混比和聚乙二醇(PEG)质量分数对纯水通量、截留率,动态接触角以及通量恢复率的影响。结果表明:当PVC/PVDC共混比为4/6时共混膜的综合性能最好,纯水通量为212.9 L/(m2·h),在0.1 MPa的压力下,对牛血清蛋白(BSA)的截留率为88.5%。PEG最佳质量分数为6%,此时纯水通量为336.6 L/(m2·h),截留率为81.6%,瞬间接触角从81.1°下降到74.5°,恢复通量率从52.7%上升到85.7%。研究结果说明PEG可以有效地改善共混膜的亲水性和抗蛋白污染能力。  相似文献   

17.
为提高聚乳酸(PLA)纤维的力学性能,采用聚丙烯(PP)与聚乳酸(PLA)通过熔融纺丝制备PLA/PP纤维,并借助差示扫描热量仪、热重分析仪、万能材料测试仪、纤维双折射仪对其热学性能、热稳定性、拉伸性能和纤维取向度进行表征。结果表明:PP的引入对PLA的玻璃化转变温度和熔融温度没有显著影响,但促进了PLA的结晶,结晶度提高了585.9%;随着PP质量分数的增加,PLA的热稳定性降低(特别是在初始分解阶段),但其残炭率提高,同时PLA/PP共混纤维的取向度提高,力学性能得到改善;当PP质量分数为20%时,PLA/PP共混纤维的取向度、断裂强度和断裂伸长率分别提高了55.6%,98.2%和44.4%。  相似文献   

18.
酸性染料对大豆蛋白/牛奶/聚乙烯醇共混纤维的吸附性能   总被引:1,自引:0,他引:1  
采用C.I. 酸性蓝113和C.I. 酸性蓝168对大豆蛋白/牛奶酪素蛋白/聚乙烯醇共混纤维(简称双蛋白纤维)和大豆蛋白/聚乙烯醇共混纤维(简称大豆蛋白纤维)进行染色,比较了Langmuir和Langmuir+Nerst两个染色热力学方程对实验点的模拟结果,探讨了染色温度对Langmuir+Nerst吸附常数的影响,分析了两只染料对双蛋白纤维和大豆蛋白纤维吸附性能的差异。结果表明,Langmuir+Nerst吸附模型比更适合于描述C.I. 酸性蓝113和C.I. 酸性蓝168在双蛋白纤维和大豆蛋白纤维上的吸附,染料在双蛋白纤维上的平衡吸附量高于大豆蛋白纤维,C.I. 酸性蓝113与纤维离子键结合程度高于C.I. 酸性蓝168。  相似文献   

19.
为提升聚乳酸(PLA)熔喷非织造材料的空气过滤性能,通过溶胶-凝胶法制备出掺杂Ag的SiO2气凝胶(SiO2-Ag),并采用熔融共混法获得不同比例的SiO2-Ag/PLA共混材料,经熔喷加工制备出SiO2-Ag/PLA复合熔喷非织造材料。通过对复合熔喷材料的表面形貌、结构、空气过滤和力学性能进行表征,结果表明:SiO2-Ag能够均匀分布于PLA基体中,随着SiO2-Ag含量的增加,复合熔喷材料的平均纤维直径和孔径略有增大,过滤效率与拉伸强度先增加后减小,过滤阻力下降,透气率和品质因子提高。当SiO2-Ag质量分数为3%时,SiO2-Ag/PLA复合熔喷材料的综合性能最佳。  相似文献   

20.
为制备高效抗菌的生物可降解聚乳酸(PLA)静电纺丝纤维膜,首先利用L-抗坏血酸对银和铜的硝酸盐溶液进行化学还原,得到银-铜双金属纳米粒子(Ag-Cu NPs)。然后将Ag-Cu NPs与PLA纺丝液共混,通过静电纺丝技术制备了不同组成的Ag-Cu NPs/PLA复合纳米纤维膜,并对其形貌、结构、亲水性和抗菌性能等进行测试。结果表明:合成的Ag-Cu NPs的粒径约为32 nm,复合纳米纤维膜中Ag-Cu NPs被PLA基体包覆,且沿着纤维径向排列,纤维表面存在大量微小的孔洞;加入Ag-Cu NPs后,Ag-Cu NPs/PLA的水接触角略微降低,亲水性增加,且Ag-Cu NPs和PLA之间仅发生物理作用,未产生明显的化学作用;相比于纯PLA纳米纤维膜,Ag-Cu NPs/PLA的抗菌率明显提高,当纺丝液中Ag-Cu NPs相对于PLA质量为7%时,复合纳米纤维膜对大肠杆菌和金黄色葡萄球菌的抑菌率均达到99%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号