首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
利用海绵钛与B4C粉末之间的自蔓延高温合成反应,经普通熔铸工艺制备了TiB晶须和TiC粒子增强的钛基复合材料.研究了不同TiC、TiB含量对颗粒增强钛基复合材料组织和性能的影响.  相似文献   

2.
TiC含量对TC4合金激光熔覆层组织和性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用激光熔覆工艺在TC4钛合金基体表面制备了添加不同质量分数(0%、2%、4%、6%)TiC的Ni60A复合熔覆层,通过光学显微镜、显微硬度计、X射线衍射仪、摩擦磨损机分析了不同TiC含量对熔覆层组织及性能的影响。结果表明:未添加TiC的熔覆层组织以树枝晶为主,添加TiC后出现了花瓣状物相;XRD分析发现熔覆层中出现了AlCCr2、Al0.24B0.01Ni0.75等硬质增强相,这些能够显著提高熔覆层的硬度。显微硬度及摩擦磨损试验结果表明,添加TiC的熔覆层平均硬度均较基体硬度有大幅提高,摩擦因数显著降低,且随TiC含量的增加,熔覆层硬度先增加后降低,摩擦因数先降低后增加,4%TiC熔覆层的硬度最大,相比基体提高了213.3%,摩擦因数最小,为0.309 774。  相似文献   

3.
以TC4和B4C粉末为原料,通过放电等离子烧结法(SPS)并结合热挤压制备不同含量TiB和TiC增强TC4基复合材料,研究以TC4-B4C为原位反应体系生成不同含量TiB和TiC对TMCs的微观组织和力学性能的影响规律及其高温力学性能。结果表明:原位生成的TiC和TiB与基体结合牢固,TiC呈类球形颗粒状,TiB呈晶须状;增强相在基体中呈现出沿一次颗粒边界分布的三维网络状形貌;与未增强TC4合金相比较,复合材料基体晶粒显著细化,并存在较高的位错密度,TC4基复合材料的室温和高温性能得到显著提升;在室温拉伸下,当B4C的含量(质量分数)为0.5%时,基体的连通性较好,表现出较高的强度(抗拉强度1246 MPa)和较好的伸长率(12.4%);在400℃下进行拉伸时,当B4C的含量为1.64%时,TC4基复合材料的抗拉强度和伸长率分别为1112 MPa和6.9%。  相似文献   

4.
通过3次真空自耗电弧熔炼、自由锻+旋锻的方式制备了不同TiB+TiC含量的颗粒增强钛基复合材料,研究了TiB+TiC含量对锻态钛基复合材料组织与力学性能的影响。结果表明,添加的B4C在基体中完全反应,TiC为唯一碳化物,TiB为唯一硼化物。经锻造后,钛基复合材料横向组织由球状、片状α相和包围在四周的β相组成,短棒状和块状增强相离散分布,而纵向组织由沿着流变方向被拉长的α相和β相组成,增强相沿着流变方向排列分布。当TiB+TiC含量为5vol%时,钛基复合材料表现出优异的综合性能,抗拉强度达到1291 MPa,延伸率为8.5%,磨损体积较相同工艺制备的TC4钛合金减少25%。当TiB+TiC含量增加到10vol%时,粗大的TiB增强相和微孔缺陷数量大幅增加,钛基复合材料的塑性和耐磨性被削弱。  相似文献   

5.
采用放电等离子体烧结法(SPS)制备了不同含量TiC颗粒的Ta-2.5W合金,利用光学显微镜、扫描电镜、显微硬度仪和拉伸试验等研究了 TiC含量对Ta-2.5W合金组织和性能的影响.结果表明:添加TiC可以细化合金的晶粒尺寸,TiC添加量为0.3 mass%时,合金的晶粒尺寸最小,硬度和强度均达到最大值.分布在晶界的TiC对晶界起钉扎作用是细化合金晶粒并提高其性能的主要原因.  相似文献   

6.
通过微波烧结法制备TiC/TC4复合材料,研究不同质量分数增强相TiC(0%、5%、10%、15%)对钛基复合材料显微组织和性能的影响。结果表明:TiC/TC4复合材料只有TiC和基体α-Ti+β-Ti 3种物相组成。随着增强相TiC含量增加,TiC/TC4复合材料相对密度、显微硬度(HV)、室温抗压缩强度均提高,分别达到98.01%、6610 MPa、1789 MPa,其相对密度与有关文献中的真空烧结相比提高2%~6%,其抗压强度与熔铸法制备的铸态钛基复合材料相比提高5%~15%。随TiC含量增加,TiC/TC4复合材料耐磨性提高,摩擦系数在0.25~0.30之间,其室温磨损机制由磨粒磨损和粘着磨损转变为轻微的剥层磨损。  相似文献   

7.
8.
研究了Y含量对TC4合金铸造组织及力学性能的影响。结果表明,TC4合金中添加微量Y元素后大幅细化了TC4合金的晶粒,提高了合金的力学性能。在含Y元素的TC4合金基体中发现了Y2O3·2Ti O2析出物,Y元素在固液前沿的富集是Y2O3·2Ti O2析出及TC4合金组织细化的主要原因。当TC4合金中的Y元素含量为0.1%时,合金的细化效果最为明显,并获得了最佳的强度与塑性匹配。当合金中Y元素含量大于0.1%时,晶粒尺寸不再减小,合金的力学性能急剧降低。  相似文献   

9.
离心铸造TC4合金冷速对其组织和力学性能的影响   总被引:1,自引:0,他引:1  
实验与模拟计算相结合研究Ti-6Al-4V(TC4)合金在陶瓷壳型离心精铸条件下,铸件模数对凝固过程冷速的影响,以及铸件组织、性能随模数和冷速之间的统计关系。结果表明:当铸件模数较小时,模数大小对凝固过程冷速影响比较显著,而随着模数的进一步增加,当M7.00mm时,铸件冷却速度随模数变化并不明显;晶粒尺寸、α/β片层厚度及二次枝晶间距均随铸件模数的增加及冷速的减小而增大,抗拉强度则呈现相反趋势。得出了TC4离心精铸件组织、性能与铸件模数和冷速之间定量关系的表达式。  相似文献   

10.
采用放电等离子烧结法制备了(TiC+TiB)/TC4复合材料,并研究了TiC和TiB增强相含量对钛基复合材料物相组成、微观结构和力学性能的影响。采用SPS温度为1 100℃原位合成制备出(TiC+TiB)/TC4复合材料,TiCp和TiBw呈准连续的网状结构分布在晶界处。样品按照TiC∶TiB为1∶1的比例来制备出增强相体积分数为x%(x=0、1、2.5、5、7.5)增强钛基复合材料。在增强相的体积分数为2.5%时复合材料的屈服强度、抗压强度最高,分别为1 264和1 803 MPa,工程应变由基体合金的30%增加至39.4%。  相似文献   

11.
采用光学显微镜(OM)、扫描电子显微镜(SEM)和拉伸试验机研究了Cr含量(质量分数为0~0. 1%)变化对ZnAl4合金组织与性能的影响。结果表明:随着Cr含量的增加,ZnAl4合金中初生η-Zn相明显细化,体积分数明显增多,而层状共晶组织减少。细晶强化和析出强化是试验合金的主要强化机制。当Cr的质量分数为0. 06%时,合金的抗拉强度、硬度和断后伸长率最佳,分别为252 MPa、84. 6 HB和2. 46%。  相似文献   

12.
塑性变形在提高原位自生非连续增强钛基复合材料(DRTMCs)强度的同时可改善塑性,但高的屈强比使其变形工艺非常敏感,压缩了适合变形的工艺区间,加大了变形加工难度。为此,提出了钛基复合材料(TMCs)等温挤压方法并成功制备出强塑性匹配较好的颗粒增强TMCs,研究了挤压变形量对其微观组织演化及综合性能变化规律的影响。结果表明,挤压过程中增强体TiB晶须和TiC颗粒断裂并实现二次分布,使TMCs中增强体分布得到合理有效控制,当挤压比从7增大到10时,TiB晶须长径比明显减小,但随后趋于稳定。随着变形量增加,α相内发生连续动态再结晶,形成与片层厚度相当的沿着原始片层呈竹节排布的细小等轴晶粒。从力学性能测试结果可知,在温度较低的两相区(985℃)进行等温热挤压变形,DRTMCs强度可达1 111 MPa,延伸率为15.7%,实现了较好的强塑性匹配。  相似文献   

13.
采用XRD,OM,BSE,SEM和显微硬度计等手段研究了氘含量对Zr-4合金显微组织及力学性能的影响.结果表明,随着氘含量(质量分数)从1.35%增加到2.21%,氘化物数量增加,其形态及分布也发生了显著变化:在1.35%时,主要以晶内针状氘化物析出为主;随着氘含量增加,晶界块状氘化物快速增长;当氘含量进一步增加至2.21%时,晶界块状氘化物开始相互衔接,并逐渐向晶内生长.在氘含量较高的样品表层,有一定厚度的氘化物层形成,且层内出现微裂纹.所形成的氘化物以d-氘化物为主,而高氘含量样品表面有e-氘化物出现.样品心部至表面存在一定的硬度梯度,且随着氘含量的增加,样品的硬度增加,其相应的硬度梯度增大.随氘含量增加,样品的屈服强度略有增加,而抗压强度却显著下降,由1.35%下的1176 MPa降低到了2.21%下的856 MPa.抗压强度的降低与组织中微裂纹有关.样品压缩后的裂纹主要沿晶界块状氘化物形成并扩展,因此晶界块状氘化物是材料压缩性能下降的主要原因.  相似文献   

14.
采用粉末冶金工艺制备了6组不同Ni、Mo添加量的金属陶瓷材料.通过扫描电镜观察组织结构、断口形貌及裂纹扩展,用三点弯曲法测试抗弯强度,用洛氏硬度计测得试样硬度.试验结果表明,添加Mo后,TiC基金属陶瓷呈现出典型的芯壳结构,组织细化明显.当TiC含量为70%、Ni∶Mo=2 ∶ 1时,材料的抗弯强度、硬度与断裂韧性综合...  相似文献   

15.
研究TC4合金经过800℃热循环后的组织和力学性能。结果表明:循环次数对合金的性能影响显著,随着循环次数的增加,合金的强度和塑性均开始下降;其中,合金热循环5次后强度下降迅速,随着循环次数的增加合金强度和塑性下降速度有所减缓。分析认为:在0~5次循环区间内,引起强度迅速下降的主要原因是由于组织中β相减少,5~100循环区间内强度下降主要是由于组织变化和合金表面氧化共同引起,而100~200次热循环区间强度下降主要由表面氧化所致。  相似文献   

16.
在工业条件下采用不同冷却方式对TC6合金进行等温退火热处理,并分别做了各项力学性能测试。结果表明,两种热处理方式均能得到符合指标要求的力学性能。  相似文献   

17.
研究了(α+β)相区等温锻造后β热处理、双重退火工艺对TC18钛合金显微组织和力学性能的影响。结果表明,在(α+β)相区锻造后采用β热处理,形成粗大β晶粒,引起"β脆性",强度和断裂韧性较高,塑性急剧降低,不能满足技术要求,有待进一步研究;采用双重退火热处理,强度稍低,塑性和断裂韧性均较好,综合性能较好。  相似文献   

18.
利用扫描电镜、透射电镜、X射线衍射仪、拉伸试验机以及硬度计等研究了多重热处理TC4钛合金获得不同α相的含量和形态对其组织和力学性能的影响。结果表明:采用三重热处理工艺能有效调节TC4钛合金组织次生α相的含量和形态,从而优化试验合金的力学性能。第一重热处理温度越高,初生等轴α相含量越低且减少速率越快。第二重热处理温度越高,组织中等轴α相的数量不断减少,次生条状α相含量增多且形态更为粗大,且组织中出现二次次生α相。随着初生等轴α相数量增加,晶粒尺寸减小,次生α相长宽比降低,集束域方向越混乱,试验合金的抗拉强度越高,塑性也越好。次生α相的含量越多,试验合金的硬度越高。经过940℃×1 h(WQ)+880℃×1 h(WQ)+820℃×1.5 h(AC)热处理后,试验合金具有等轴组织,表现出最好的强塑性匹配;而采用940℃×1 h(WQ)+920℃×1 h(WQ)+820℃×1.5 h(AC)热处理试验合金具有双态组织,表现出最高的硬度,且其强塑性匹配较好。  相似文献   

19.
对电子束冷床炉熔铸的TC4钛合金扁锭,通过3个火次轧制获得了不同厚度的板材,研究了不同退火温度(750、780、810和850 ℃)对板材显微组织和力学性能的影响。结果表明,一火轧制板材的显微组织破碎不充分,提高退火温度未能明显改变初生α相的形态,二火、三火轧制后原始片层组织逐渐完全破碎,等轴状初生α相比例相应提升,随着退火温度的升高,二火板材初生α相逐渐球化,三火板材初生α相在780 ℃开始逐渐长大,次生α相均呈现出增厚变宽的趋势。综合分析认为,一火板材在810 ℃、二火板材在840 ℃、三火板材在750 ℃退火后,获得了较好的强度和塑性匹配;通过对相应合金板材断口形貌分析,室温断裂机制和高温断裂机制均为典型的韧性断裂。  相似文献   

20.
研究了不同退火工艺对TC4合金力学性能的影响。结果表明,经普通退火的TC4合金的短时力学性能要明显好于经β退火的TC4合金,其抗拉强度高出约100 MPa,屈服强度高出约80 MPa,伸长率高出约60%。经β退火后的TC4合金的断裂韧度为100~120 MPa·m1/2,而普通退火态的TC4合金仅有80~90 MPa·m1/2。分析表明,经普通退火得到的显微组织比经β退火处理得到的篮网组织有着更好的强度和塑性,而篮网组织可以使裂纹扩展路径变长,显著提高了TC4合金的断裂韧度值。同时,得到了TC4合金屈服强度与断裂韧度值的函数表达式,发现TC4合金的屈服强度与断裂韧度值的平方成反比。采用此函数关系表达式计算出的KIC值在KIC的实测值范围内,为TC4合金断裂韧度检测结果的可靠性提供了一种判断方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号