首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以NaCl+NaHSO3为腐蚀介质,通过浸渍干湿复合循环实验及腐蚀失重分析,并利用SEM,XRD和FTIR技术,研究了Q235碳钢和P265GH低合金钢的大气腐蚀行为。结果表明,两种钢的腐蚀遵从相同的动力学规律,腐蚀产物中均存在大量致密的α-FeOOH和非晶态δ-FeOOH,锈层具有很好的保护性,使得腐蚀速率降低。实验开始阶段两种钢的腐蚀量基本相同,但随着腐蚀的进行两者差距增大,P265GH低合金钢较Q235碳钢的失重小、锈层致密、耐腐蚀性好。  相似文献   

2.
采用硅藻土模拟法研究了Q235,A1和A2钢在模拟酸性土壤中的腐蚀行为,对比分析了材料的腐蚀失重,利用扫描电镜(SEM)和X射线衍射(XRD)等方法研究了材料的腐蚀形貌及腐蚀产物。结果表明,在模拟酸性土壤中,Q235,A1和A2钢周期360h的腐蚀速率别为0.48,0.14和0.097mm/a。碳层分析表明,降低碳含量有助于减少钢中的微电池腐蚀;Cr的加入可以提高基体的自腐蚀电位;腐蚀后内锈层位置Cr的富集可以提高锈层的致密性,并改变点蚀的扩展方式;3种材料主要腐蚀产物均为α-FeOOH,γ-FeOOH和Fe3O4,其中A1和A2钢内锈层腐蚀产物中α-FeOOH比例增大,其α/γ-FeOOH比值约为Q235的10倍,腐蚀产物保护性更优。  相似文献   

3.
研究了南方电网杆塔材料Q235、Q345以及镀锌钢在海洋大气环境中的初期腐蚀行为。利用SEM、EDS分析了试样表面锈层的微观形貌和化学成分,利用X射线衍射仪分析了锈层的物相组成,并用失重法计算了腐蚀速率。结果表明,除了Q345的腐蚀速率略低于Q235外,这两种钢材的初期腐蚀行为非常接近,腐蚀产物主要为γ-Fe OOH和α-FeOOH,这种腐蚀产物疏松多孔,存在大量裂纹。海洋环境中氯离子的存在促进了腐蚀产物的形成,从而加速了基体的腐蚀;镀锌钢表层为相对致密的氧化锌,没有铁的氧化物,因此其腐蚀速率很低,表现出了良好的耐腐蚀性。  相似文献   

4.
刘雨薇  赵洪涛  王振尧 《金属学报》2020,56(9):1247-1254
采用腐蚀失重法、宏观形貌观察法、SEM、XRD、白光干涉及拉伸实验等分析手段对碳钢Q235和耐候钢Q450NQR1在南沙大气环境下的初期腐蚀行为进行了研究。结果表明,Q235和Q450NQR1在南沙大气环境中的初期腐蚀比万宁及西沙等海洋大气环境中的腐蚀严重,2种钢的朝天面都比朝地面腐蚀严重,朝地面的锈层更容易脱落。暴晒2个月时,Q235和Q450NQR1的腐蚀失厚相近。暴晒5个月时,Q235的腐蚀失厚明显高于Q450NQR1的腐蚀失厚。2种钢在暴晒2个月时,朝天面和朝地面的腐蚀产物都主要为γ-FeOOH、α-FeOOH和Fe_3O_4;而暴晒5个月时,朝天面产物中出现了β-FeOOH,而朝地面β-FeOOH极少。朝天面的产物中Fe_3O_4相对含量少于朝地面,γ-FeOOH的相对含量多于朝地面。  相似文献   

5.
为了研究Q235钢在海水中的耐腐蚀性及腐蚀机理,采用静态浸泡试验方法,研究了Q235钢的腐蚀速率、局部腐蚀形貌、腐蚀断面形貌,并对腐蚀层成分进行分析。结果表明:Q235钢在模拟海水全浸区的腐蚀速率先降低,然后略有升高,再略微降低,最后趋于稳定,其抗腐蚀能力较好;腐蚀先出现点蚀,最后形成连续的腐蚀层;腐蚀层分为两层:内锈层是Fe3O4、α-FeOOH、γ-FeOOH、β-FeOOH的混合物,外锈层是γ-FeOOH。  相似文献   

6.
针对在安徽省内代表性变电站站点自然环境下曝露1和3 a后的Q235、40Cr钢试样,开展腐蚀产物、腐蚀层形貌的研究,探讨其大气腐蚀机理。采用失重法获取Q235和40Cr钢试样的腐蚀速率,结合安徽省各相关地市的主要环境因素数据,再采用灰色关联分析方法,研究主要环境因素对1和3 a期Q235、40Cr钢试样大气腐蚀的影响规律。结果表明,Q235和40Cr钢试样大气腐蚀产物为FeOOH、Fe3O4、Fe(OH)3及FeSO4;腐蚀层表面密布着棉花球状的α-FeOOH,其间分布着片状的γ-FeOOH,腐蚀层结构较致密,但发生层状开裂。安徽省内Q235和40Cr钢试样大气腐蚀等级均在C2和C3等级,两者无明显差别。影响Q235和40Cr钢试样1 a期大气腐蚀的环境因素关联度排序为:NO2>温度>SO2>相对湿度>O3;随着曝露时间延长至3 a,该关联度排序改变为:SO2、温度>NO2...  相似文献   

7.
通过现场暴晒实验研究碳钢在吐鲁番干热大气环境中的腐蚀行为和机理。Q235和Q450钢在吐鲁番干热大气环境中经过1 a暴露后,Q235钢的腐蚀速率大于Q450钢。结合扫描电镜(SEM)、能谱分析(EDS)、X射线衍射(XRD)等分析测试手段,研究了两种碳钢表面的腐蚀产物,两者的腐蚀产物主要为α-FeOOH,γ-FeOOH和Fe3O4。Q235钢中γ-FeOOH与α-FeOOH含量的比值较高,其腐蚀产物疏松,耐蚀性较差。而Q450钢中γ-FeOOH与α-FeOOH含量的比值较低,其腐蚀产物相对致密,耐蚀性较好。去除腐蚀产物后,通过体视学显微镜观察发现,Q235钢的表面产生大量密集腐蚀坑,且腐蚀坑深度和体积都大于Q450钢表面腐蚀坑。  相似文献   

8.
任啸  钟尧  吴卓霖  刘熊  赵晶 《腐蚀与防护》2022,(6):48-52+57
通过中性盐雾试验,研究了Q235B钢和镀锌钢在NaHSO3和NaCl混合溶液中的腐蚀行为,利用扫描电镜和电化学测试等方法,分析了两种材料的耐蚀性。结果表明:随着腐蚀时间的延长,Q235B钢表面腐蚀产物由片状γ-FeOOH转变为球状α-FeOOH,Q235B钢和镀锌钢表面的腐蚀产物层逐渐变得致密,镀锌钢的低频容抗弧半径和电荷转移电阻均呈先减小后增大的趋势;在盐雾腐蚀过程中,Q235B钢的腐蚀电流密度大于镀锌钢的,镀锌钢的电荷转移电阻大于Q235B钢的,表明镀锌钢的耐蚀性比Q235B钢的好。  相似文献   

9.
在吐鲁番干热大气环境中对Q235和Q450钢进行4 a大气暴晒实验。结果表明,两种钢表面均有较为明显的锈层,Q450耐候钢4 a的平均腐蚀速率为12 g·m~(-2)·a~(-1),Q235钢平均腐蚀速率为14 g·m~(-2)·a~(-1),Q450钢腐蚀速率相对较低,腐蚀坑深度较浅。腐蚀产物主要由α-FeOOH,γ-FeOOH和Fe_2O_3·H_2O组成,其中Q450钢腐蚀产物中α-FeOOH比例相对较高,腐蚀产物致密。电化学阻抗测试结果表明:Q450钢腐蚀产物电阻远大于Q235钢的,表面电荷转移电阻也大于Q235钢的,即Q450钢耐蚀性较好,腐蚀产物对基体保护作用相对较好。  相似文献   

10.
通过室外暴露试验和电化学测试,研究了电网设备主要金属材料Q235碳钢在四川宜宾地区不同大气环境中的腐蚀行为。结果表明:在四川宜宾A、B、C三个变电站环境中,Q235碳钢的平均腐蚀速率分别为19.68μm/a、41.40μm/a和28.75μm/a,其表面腐蚀产物主要由α-FeOOH、γ-FeOOH和Fe3O4组成,在B和C变电站环境中,Q235碳钢表面腐蚀产物中的α-FeOOH含量较高;在B变电站环境中,Q235碳钢的腐蚀电流密度最大,膜层电阻最小,说明其表面锈层对基体的保护性能较差。  相似文献   

11.
郭智辉 《铸造技术》2014,(7):1408-1410
在Q235钢中添加不同含量的合金元素Cu和Cr,研究该钢在模拟大气环境下的初期腐蚀行为。结果表明,该钢在大气腐蚀初期的腐蚀产物形态为団状和链条状,主要腐蚀产物为γ-FeOOH、α-FeOOH和γ-Fe2O3。当α-FeOOH含量较高时可以有效减慢大气腐蚀的发展趋势  相似文献   

12.
Q235钢海洋大气腐蚀暴露试验研究   总被引:12,自引:3,他引:12  
采用Q235钢在海南万宁距海岸95m、25m和海洋平台3个暴露点进行了半年大气腐蚀暴露试验,同时持续监测各暴露点空气中的氯离子含量.利用视频显微镜观测样品锈层的腐蚀形貌,采用比浊法测定腐蚀产物中氯离子含量,使用FTIR光谱仪分析锈层的物相组成.结果表明,样品的朝阳面和背阳面腐蚀形貌存在较大差异,各暴露点样品腐蚀深度与各点空气中及锈层中的氯离子含量密切相关,腐蚀产物的主相为γ-FeOOH和Fe3O4,次相为α-FeOOH和δ-FeOOH.  相似文献   

13.
对比分析了光照和暗黑条件下Q235钢腐蚀前后的质量变化,并对表面腐蚀产物的物相、表面腐蚀形貌和电化学性能进行了分析。结果表明,在相同的时间下,光照条件下Q235的腐蚀增重都要高于暗黑条件;随着腐蚀时间的延长,暗黑和光照条件下Q235钢的腐蚀失重都逐渐增加,在紫外光照条件下Q235钢的大气腐蚀速率明显要高于暗黑条件下的腐蚀速率;光照条件下Q235钢的表面腐蚀产物主要有α-Fe OOH、β-Fe OOH和γ-Fe OOH;而暗黑条件下的腐蚀产物主要为α-FeOOH和γ-Fe OOH;在相同的腐蚀暴露时间下,光照条件下Q235钢的耐腐蚀性低于暗黑条件下的耐腐蚀性。  相似文献   

14.
高湿度无污染大气中温度对碳钢腐蚀的影响   总被引:2,自引:0,他引:2  
通过测试腐蚀速率、观察腐蚀形貌和分析腐蚀产物研究了不同温度高湿度无污染大气中碳钢的腐蚀规律,探讨了温度对碳钢腐蚀行为的影响。结果表明,温度升高会促进碳钢的腐蚀。腐蚀456 h,20℃时腐蚀增重呈指数增加规律,腐蚀产物以胞状物生长,在30℃和40℃环境中腐蚀增重呈指数衰减规律,主要以块状腐蚀物的形式生长,块状腐蚀产物由颗粒状腐蚀产物和胞状腐蚀产物构成。高湿度无污染大气环境中,碳钢表面首先形成水滴,水滴中心作为阳极发生铁的溶解,水滴边缘作为阴极发生氧气的还原,随后水滴中心形成胞状腐蚀产物,在胞状物的周围形成颗粒状腐蚀产物。腐蚀产物主要为γ-FeOOH和α-FeOOH,且随温度的升高,锈层中γ-FeOOH和α-FeOOH增多。  相似文献   

15.
在西沙群岛典型的高温、高湿和高盐分大气环境下对Q235钢进行了 1个月短期暴晒实验,利用扫描电镜、电子探针、激光拉曼和X射线衍射仪等观察分析了暴晒后样品的表面形貌、腐蚀产物成分和锈层元素分布。结果表明:Q235钢形成的锈层疏松多孔,多裂纹,对基体没有保护作用。由于Cl-的侵蚀作用,锈层和基体之间发生氧化还原反应,加速了基体的腐蚀。碳钢在西沙暴晒1个月后外表层的腐蚀产物主要有:Fe8(O,OH)16Cl1.3,Υ-FeOOH, β-FeOOH及少量α-FeOOH等,锈层内部不同位置的产物基本相同,主要为Fe3O4,Υ-Fe2O3以及少量的Υ-FeOOH、β-FeOOH等。  相似文献   

16.
姜杉  王瑞珍  侯清宇  苏航 《热加工工艺》2012,41(18):72-75,79
采用人工海水对含有相同基本成分的C钢和添加了0.95%Cr元素的Cr钢进行120h的流动冲刷腐蚀试验.利用SEM和XRD等方法研究了Cr元素对普碳钢锈层的形貌、物相构成及相对含量的影响.结果表明,经冲刷腐蚀以后,含Cr钢的腐蚀质量损失小于C钢的.对两种钢的锈层分析表明,两种实验钢的锈层均出现分层现象,普碳钢外锈层疏松多孔,而含Cr钢的外锈层呈块状,致密性明显优于碳钢,内锈层亦是如此.两种钢的外锈层均由Fe3O4、α-FeOOH和γ-FeOOH等物相构成;C钢的内锈层由Fe3O4构成,Cr元素在含Cr钢锈层中的富集没有改变外锈层的物相类型,但内锈层则由Fe3O4转变为β-FeOOH.  相似文献   

17.
通过腐蚀失重比较了4种不同Cr含量的Q420钢在模拟的高盐度工业大气环境下的耐蚀性能,研究了Cr对Q420钢锈层结构与组成的影响及其作用机理。结果表明,含Cr钢的耐蚀性能优于Q420钢,且9%(质量分数)Cr钢的腐蚀速率最低,耐蚀性最好;Q420钢的腐蚀速率保持稳定,含Cr钢的腐蚀速率先增大后减小,这是因为含Cr钢的锈层随着腐蚀的进行会由初期的不稳定状态转变为稳定状态,耐蚀性得到增强;Cr促进了内锈层中稳定相α-FeOOH的生成,使锈层结构更加稳定、致密,对腐蚀性介质的传递过程起到了显著的阻碍作用。  相似文献   

18.
在石油企业外管廊大气环境中对Q235碳钢进行不同腐蚀时间的静态挂片试验,并对现场Q235碳钢钢管进行取样,采用X射线衍射(XRD、X射线光电子能谱(XPS)、扫描电镜(SEM)等技术对Q235碳钢表面腐蚀产物进行分析。结果表明:经过长期腐蚀之后,腐蚀产物中的铁主要是以含氧化合物γ-FeOOH和α-Fe_2O_3的形式存在;大气中存在的SO_2对腐蚀过程具有催化作用。  相似文献   

19.
Q235碳钢在SO2气体中的初期腐蚀行为   总被引:1,自引:0,他引:1  
汪川  王振尧  柯伟 《金属学报》2008,44(6):729-734
通过SO2气体加速腐蚀实验,利用环境扫描电镜(XL30-FEG-ESEM)、能谱分析(EDAX)和Fourier红外光谱(FTIR)等分析技术,研究了碳钢Q235在湿热SO2气氛中的腐蚀行为和锈巢形成机制.结果表明:Q235在不同浓度SO2中腐蚀速率的变化趋势是不同的.浓度较高时,腐蚀速率随腐蚀时间延长而降低;浓度较低时,腐蚀速率随腐蚀时间延长缓慢增加.提高SO2浓度对锈层中含硫化合物的形成影响不大,但对锈层中氧化物或氢氧化物形成起到促进作用.实验条件下的腐蚀产物均含有FeSO4.7H2O,Fe2(SO4)3.9H2O,γ-FeOOH和无定形的δ-FeOOH,当SO2体积分数大于0.5%时,产物中还出现α-FeOOH.在0.05%SO2气氛中,Q235表面形成锈巢,锈巢内、外的各种元素含量差异很大.  相似文献   

20.
选择Cu-P-Cr-Ni钢、Cu-P-Cr钢和Q235碳钢,在0.01 mol/L的NaHSO3溶液中进行周期浸润、阻抗谱和极化曲线实验,研究了Cu-P-Cr-Ni系合金钢相比Q235碳钢在模拟工业大气(SO2)环境下的耐腐蚀性能;利用SEM,EPMA面扫描和XRD分析腐蚀锈层的形貌、组成及Cu,Cr和Ni的元素分布情况。结果表明:Cu-P-Cr-Ni系钢的腐蚀诱发敏感性最低,其次为Cu-P-Cr钢,腐蚀速率分别为Q235碳钢的59.5%和52.8%;锈层分为内、外两层,致密的内锈层明显发生Cu的颗粒状、Cr的团聚状富集,外锈层主要有Cr的富集,Ni富集不明显。Cu和Cr等的富集可形成致密的内锈层,提高低碳钢的耐蚀性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号