首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用真空电弧炉制备Al0.5CoCrFeNiB0.2高熵合金,采用X射线衍射仪、金相显微镜、扫描电镜等方法研究铸态合金的组织结构及其热处理的影响,采用显微硬度计和拉伸试验测定合金热处理前后的力学性能。结果表明:Al0.5CoCrFeNiB0.2铸态合金仅由简单的体心立方结构和两个面心立方结构三相组成。合金铸态组织由树枝状初生α1相、粒状α2相和共晶组织(α1相和层片状β相)组成。退火和淬火热处理并未改变Al0.5CoCrFeNiB0.2合金的相结构。但随着热处理温度的提高,初生α1相由共晶组织β相回溶而长大的趋势更加明显。退火和淬火热处理均可强化合金。其中,经800℃×10 h退火后,合金室温抗拉强度由铸态的850.14 MPa提高到1 232 MPa;经1 000℃×10 h淬火后,合金塑性及强度均优于铸态合金,尤其是塑性显著提高。  相似文献   

2.
核反应堆材料问题一直是制约先进核能发展的主要瓶颈之一,开发低活化材料的需求十分迫切。高熵合金这一概念的提出为低活化材料提供了新的发展思路。选择Fe、Cr、V、Ti、Mo五种低活化元素作为主元素,进行了调整Mo元素含量的真空熔炼。结果都形成了较为均匀的固溶体组织。合金的微观组织分为BCC1和BCC2两相,并且在BCC2相中出现了有序固溶体。FeCrVTiMo高熵合金经均匀化热处理之后未出现新相,元素的富集程度增加,力学性能下降。  相似文献   

3.
采用电弧熔炼工艺制备了CrxCuFe2Mo0.5Nb0.5Ni2(x=0,0.5,1.0,2.0,摩尔比)高熵合金,采用X射线衍射分析(XRD)、扫描电镜(SEM)和显微硬度计对合金的物相结构、微观组织形貌、元素分布和硬度进行了分析。结果表明,合金物相主要由面心立方固溶体相(FCC)、体心立方固溶体相(BCC)和密排六方固溶体相(HCP)组成。Cr含量的增加,有利于BCC相的形成。合金组织主要呈树枝晶和枝晶间结构组成。合金中Nb、Mo和Cu元素分别偏聚于枝晶和枝晶间区域,Fe、Cr和Ni元素的分布相对均匀。合金硬度随Cr含量的增加而逐渐增加,但增幅较小。  相似文献   

4.
研究了热处理温度和冷却方式对CoCrCu_(0.5)FeNiTi高熵合金的组织结构和性能的影响。结果表明:铸态CoCrCu_(0.5)FeNiTi高熵合金由fcc、(和Laves相组成,热处理后合金中新生成了一种四方结构的化合物相。随着热处理冷却速率的降低或加热温度的升高,CoCrCu_(0.5)FeNiTi高熵合金中析出的化合物相体积分数增加。这表明控制热处理冷却速率或加热温度可以有效地控制化合物相的体积分数,从而改变其力学性能。分析表明,冷却方式对化合物相体积分数的影响大于热处理加热温度。研究结果表明,700℃保温3 h盐水冷却处理后对CoCrCu_(0.5)FeNiTi高熵合金的性能优化效果最好。  相似文献   

5.
采用真空电弧炉制备了CoCrFeMnNiCu_x高熵合金,研究了不同Cu含量对该体系高熵合金的微观组织及力学性能的影响。结果表明,高熵合金的微观组织为树枝晶,合金的枝晶富含Co、Cr、Fe,而枝晶间富含Ni、Mn。Cu易偏析于枝晶间,添加Cu并没有使合金晶体结构发生改变,仍为FCC结构。随着Cu含量的增加,合金的抗压强度及显微硬度先增大后减小,但增减幅度很小。当x=0.8时,合金的抗压强度和硬度达到最大值。含Cu的6组元高熵合金的抗压强度及显微硬度明显高于不含Cu的5组元高熵合金。  相似文献   

6.
采用非自耗真空电弧熔炼炉制备了Cr_xCu_1Fe_2Mo_(0.5)Nb_(0.5)Ni_2(x=0、0.5、1.0、2.0,记为C1~C4合金)高熵合金,在700℃和800℃退火12h后对其微观组织和硬度进行了分析。结果表明,Cr_xCuFe_2Mo_(0.5)Nb_(0.5)Ni_2合金在铸态主要由BCC相、FCC相和HCP相组成、经700℃退火处理后,合金物相均未发生明显改变,表现出良好的热稳定性;经800℃退火后,除C2合金外,其余合金的FCC相转变为BCC相。Cr_xCuFe_2Mo_(0.5)Nb_(0.5)Ni_2合金经700℃和800℃退火后,其微观组织为枝晶和枝晶间组织,并随Cr含量的增加,枝晶间区域扩大。Cr_xCuFe_2Mo_(0.5)Nb_(0.5)Ni_2合金在铸态、700℃和800℃退火态的硬度均随Cr含量的增加而提高,但是增加幅度较小。800℃退火处理后,C4合金的硬度(HV)由441增加至480,增幅仅为8.8%,表现出相对较弱的时效硬化现象。  相似文献   

7.
采用冷坩埚悬浮熔炼法制备了FeCoCrNiMnC_(0.1)(下标为物质的摩尔比,未标注为1)高熵合金铸锭,利用X射线衍射仪、扫描电镜、显微硬度计、万能材料试验机等研究了热处理对合金组织结构和力学性能的影响。结果表明:铸态FeCoCrNiMnC_(0.1)高熵合金组织由基体和晶界处的M_7C_3相组成,随着热处理温度升高,合金中颗粒状M_(23)C_6相长大且分布均匀;随着热处理温度上升,合金硬度先降低后升高再降低,在热处理温度900℃时达到最大值279.1HV;合金强度先增后减,在热处理温度800℃时最高,为930MPa。  相似文献   

8.
采用水冷铜坩埚真空感应悬浮熔炼制备了多组元高熵合金Al0.5Co Cr Cu Fe Ni,研究了不同热处理工艺对合金的显微组织和硬度的影响规律。结果表明,Al0.5Co Cr Cu Fe Ni高熵合金相结构简单,在铸态下由两种不同成分的FCC相组成,枝晶处为贫Cu的FCC1相,枝晶间为富Cu的FCC2相,显微组织为树枝晶形貌,存在一定的枝晶偏析。合金制备态的硬度为255 HV0.5。合金具有良好的热稳定性,随着热处理温度的升高,合金的相结构和硬度均无太大的变化。冷却方式对合金的显微组织和相结构影响不大,但炉冷后合金的硬度比空冷和水冷时高。  相似文献   

9.
采用真空电弧炉熔炼制备了Al_xFeCoNiB_(0.1)(x=0.4, 0.5, 0.8, 1.2, 1.6, at%)高熵合金,并对其微观组织和力学性能进行测试。随Al含量增加,合金的铸态枝晶由fcc相转变为B_2(AlNi)/bcc相。当x=0.4,0.5时,合金的组织由枝晶fcc相和枝晶间组织B_2相及(Fe,Co)_2B组成;x=0.8时,枝晶由B_2相组成,枝晶间由fcc相及(Fe,Co)_2B组成;x=1.2时,枝晶间由共晶组织fcc+(Fe,Co)_2B组成,bcc呈纳米级颗粒状;x=1.6时,共晶组织消失。随Al含量的增加,抗压强度先上升后下降,Al含量为0.8时达到峰值,为2243 MPa,适量的Al能提高高熵合金综合力学性能。  相似文献   

10.
利用真空电弧炉熔炼制备了CrMoNbV高熵合金。通过XRD、SEM、EDS分析和显微硬度以及压缩试验,研究了合金的相结构、微观组织和力学性能。结果表明:CrMoNbV合金为单一的BCC固溶体结构,合金铸态组织为典型的树枝晶。Mo主要分布于枝晶内,Cr则分布于枝晶间,Nb,V分布较均匀。CrMoNbV高熵合金的硬度可达681.5HV,抗压强度为1450MPa,几乎无塑性变形发生,压缩断口形貌表现为解理脆断。  相似文献   

11.
采用真空电弧熔炼技术熔炼了FeCoNiMnB_x(x=0,0.0 5,0.1,0.15,0.20)高熵合金,然后对合金的微观组织及其力学性能进行测试。结果表明,未加入B元素时,合金组织具有单一FCC结构。当B含量≥0.05at%时,组织由基体FCC相+B_2Co_3组成;当B含量从0.05at%增加到0.20at%时,该合金的硬度逐渐增加,B含量为0.20at%时,该合金的硬度达到最大,为274 HV。  相似文献   

12.
利用真空电弧熔炼法制备了AlFeCrCoNiMo高熵合金。用X射线衍射(XRD)、扫描电镜(SEM)、硬度仪,研究了退火对高熵合金的微观组织及硬度的影响。结果表明:铸态以及退火后的合金是树枝晶结构,枝晶间是由Cr_9Mo_(21)Ni_(20)和NiCoCr金属间化合物组成的共晶结构;随着退火温度的升高,FCC相逐渐减少,并会析出新的金属间化合物;合金的微观应力表现出先增大后减少的变化趋势;合金的硬度随着退火温度的升高先升高再降低,合金的应力与硬度的变化趋势一致,当退火温度达到800℃时,合金的硬度达到最大。  相似文献   

13.
对(FeNi)67Cr15Mn10Al5Ti3高熵合金进行退火、冷轧和热轧+冷轧等工艺处理,采用X射线衍射仪、扫描电镜和万能试验机分别对合金进行物相组成、组织形貌以及力学性能测试和表征。结果表明,铸态和退火态的非等主元(FeNi)67Cr15Mn10Al5Ti3高熵合金更易形成单相固溶体;在中等变形的热轧+冷轧工艺下,合金形成FCC+BCC的双相固溶体,其屈服强度可提高到460.0 MPa;在中等变形的冷轧工艺下,合金会形成细小的金属间化合物,从而具有细小金属间化合物强化机制,使屈服强度显著提升并达到722.0 MPa,同时,合金仍具有约25.7%的均匀伸长率,综合力学性能最佳。  相似文献   

14.
研究了不同温度退火对80%冷轧Al0.2CoCrFe2Ni高熵合金显微组织和力学性能的影响。使用X射线衍射仪(XRD) 、电子背散射衍射仪(EBSD)、微控电子万能试验机分别对合金进行了晶体结构、织构类型和力学性能的表征。结果表明,合金在铸态、轧制态以及退火态都表现为稳定FCC晶体结构。合金铸态下呈现典型的树枝晶组织,经80% 轧制后出现了明显的轧制变形带,在随后的退火过程中发生再结晶,其再结晶晶粒体积分数及其晶粒尺寸随着退火温度的升高而增加。合金经过80%轧制后主要表现为(111)<112>织构,其织构强度随着退火温度的升高而降低。80%轧制使Al0.2CoCrFe2Ni合金获得较大的抗拉强度(1005 MPa)和较低的塑性(10%), 随着退火温度的提高,合金的强度降低塑性增强,并在700 ℃退火时合金获得最佳的综合力学性能,该过程主要取决于合金中的位错密度、再结晶体积分数和晶粒尺寸及其再结晶织构的演变。  相似文献   

15.
利用X射线衍射仪、光学显微镜、扫描电镜、电子背散射衍射、硬度测试和拉伸实验等手段,研究了退火温度对冷轧变形量为95%的Al_(0.3)CoCrFeNi高熵合金微观组织和力学性能的影响。结果表明:合金经过95%冷轧变形后仍保持FCC单相;冷轧变形后的合金的硬度明显提高,塑性大幅下降,强度提高了4~5倍;经过600℃以上温度退火后,合金发生再结晶;随着退火温度的升高,晶粒尺寸逐渐增大,合金强度下降,塑性提高,断口形貌由解理特征向韧窝特征转变;同时在600~800℃退火时合金中有少量第二相(BCC相)析出,温度越高,第二相析出越明显。  相似文献   

16.
采用真空非自耗电弧熔炼的方法制备了5种名义成分为NbMo0.5HfxTiZrCrAl(x=0, 0.25, 0.5, 0.75, 1, at.%)的难熔高熵合金。研究了Hf对合金组织及力学性能的影响规律。结果表明:添加Hf和不添加Hf的合金的微观组织均由两种BCC相(即BCC1和BCC2)和Laves相构成。在未添加Hf的合金中,BCC1相中主要富含Zr、Cr和Al元素,BCC2相中主要富含Nb、Ti和Mo元素。而在添加Hf的合金中,BCC1相中主要富含Hf、Zr、Cr、Mo和Al元素,BCC2相中主要富含Nb和Ti元素。随着Hf含量的增加,BCC1相的含量逐渐增加,且BCC1和BCC2相的晶格常数均有所增大。此外,随着Hf含量的增加,合金的硬度和脆性均逐渐增加,而合金在1200 ℃的抗压强度逐渐降低。  相似文献   

17.
采用真空热压烧结工艺,在不同的烧结温度下制备了AlTiVZr_(0.2)B_(0.2)高熵合金,对合金的微观组织和力学性能进行了研究。结果表明,AlTiVZr_(0.2)B_(0.2)高熵合金主要由简单立方结构的基体相和大量球状的黑色TiB_(12)与白色Al_3Zr_2析出相组成,其密度低于目前常用的TC4钛合金,而硬度和压缩强度均高于TC4钛合金。1 100℃制备的高熵合金具有最高的硬度(809.7HV)、抗压强度(2 080MPa)和比强度(432.7×10~3 N·m/kg)。原因在于1 100℃烧结时,组织中的TiB_(12)与白色Al_3Zr_2析出相弥散度最高,分布最均匀,具有最好的弥散强化效果。  相似文献   

18.
通过XRD、SEM、EDS分析及显微硬度测试,研究了不同Ti含量的AlCoCrNiSiTix高熵合金微观组织结构与力学性能。结果表明:AlCoCrNiSiTix高熵合金主要以bcc1+bcc2两相共存,其中bcc1为AlNi固溶体,bcc2为CrSi固溶体。随着Ti元素的添加,合金中出现了少量Ni3Ti金属间化合物;合金铸态组织形态呈树枝晶状,微观组织中Al、Ni、Ti主要存在于枝晶内,Cr、Si主要偏析于枝晶间;同时合金硬度显著提高。  相似文献   

19.
为了研究La对难熔高熵合金显微组织与力学性能的影响,制备不同La含量的NbMoTiVSi0.2合金,并对其相组成、显微组织演变、压缩性能及相关机理进行系统分析.结果表明,不同La含量的合金由BCC固溶体、共晶组织、MSi2二硅化物和La析出相组成.共晶组织及大部分La析出相在晶界处形成,而二硅化物相在晶粒内部形成.La...  相似文献   

20.
WMoNbCrTi高熵合金是一种极具应用潜力的高温结构材料,添加Si有望提高其综合力学性能。以高能球磨粉末为原料,采用放电等离子烧结技术制备了WMoNbCrTiSix(x=0、0.1、0.25和0.5)高熵合金,研究Si含量对其微观组织和力学性能的影响。结果表明:加入Si后高熵合金的组织由BCC固溶体、Laves相和硅化物组成。当x=0.1时,Si主要形成Ti5Si3,当x=0.25时,大部分Si与Ti形成Ti5Si3,少部分Si与Nb形成Nb3Si,当x=0.5时,Si主要形成Ti5Si3、Nb3Si和Cr3Si。当x从0增加到0.5时,WMoNbCrTiSix高熵合金的硬度由9.84 GPa增加到13.46 GPa,断裂韧性从6.68 MPa·m1/2下降到4.72 MPa·m1/2。WMoNbCrT...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号