首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
等通道转角分流模挤压AZ31镁合金管材   总被引:1,自引:0,他引:1  
采用等通道转角挤压(ECAP)技术改良了传统挤压模具分流孔;通过螺旋槽焊合模腔,挤出了壁厚2 mm的管材。研究了镁合金的组织变化及材料的性能。结果表明:挤压态合金组织均匀,晶粒细小(平均晶粒尺寸约为12.5μm)。等通道转角挤压的细化晶粒过程、动态再结晶以及退火再结晶使合金具有良好的组织结构和力学性能。挤压态试样断口呈现为脆性解理断裂方式,退火态试样断口则表现为脆性和韧性混合断裂机制。  相似文献   

2.
AZ31镁合金轧制板材在退火处理中的组织性能演变   总被引:2,自引:0,他引:2  
研究了AZ31镁合金轧制薄板经200~400℃退火5~240 min后的组织性能演变.通过金相组织、显微硬度、室温力学性能及拉伸断口等测试技术,分析了其组织性能的变化.结果表明,AZ31镁合金轧制板材在250℃以上退火过程中的显著组织变化在几分钟内就已经发生,250℃退火10 min组织出现明显的静态再结晶组织;400℃退火在5 min内已经基本完成再结晶;发生再结晶的退火温度存在临界值,在200℃以下退火,即使经过240min也不能完成再结晶.低于350℃退火,完成再结晶后,在一定的时间内晶粒长大较慢,退火240 min后晶粒尺寸为7~8 μm.轧制态AZ31镁合金板材的室温拉伸断口为准解理断裂,退火处理使板材的延性大大改善,断口呈韧性断裂.300℃×120 min退火后AZ31镁合金薄板的综合性能较好,抗拉强度为297.1 MPa,断裂伸长率为23.98%.  相似文献   

3.
Mg-Al-Zn系变形镁合金轧制及热处理后的组织和性能   总被引:55,自引:8,他引:55  
研究了Mg-Al-Zn系AZ31和AZ61变形镁合金铸锭经不同温度、时间均匀化退火后的组织性能。对均匀化后的合金锭进行了热轧,轧后板材在不同温度下进行了退火,研究其再结晶行为及组织性能。并测量了合金在热轧态及退火态下的主要拉伸力学性能,观察了合金拉伸断口形貌。结果表明,在723K温度均匀化退火8-10h后合金铸锭组织均匀,有利于热轧开坯变形。热轧合金板材在573K温度退火1h可发生完全再结晶,生成细小均匀的等轴晶组织。热轧状态下AZ31和AZ61合金的抗拉强度分别为270.6MPa和260.3MPa,退火后板材强度略有下降,但伸长率有明显提高,分别达到18.8%和11.2%。合金热轧态呈脆性准解理断裂,退火后转变为韧性断裂。  相似文献   

4.
再结晶退火对AZ31镁合金挤压板材组织与性能的影响   总被引:1,自引:1,他引:0  
利用光学显微镜和扫描电镜对AZ31镁合金挤压板再结晶退火前后的显微组织和断口形貌进行分析,并通过室温拉伸试验研究了再结晶退火前后的力学性能.结果表明,随退火保温时间的延长,板材先出现大量片状退火孪晶,随后退火孪晶消失,变形组织被细小、均匀的再结晶晶粒所取代;再结晶退火后,挤压板伸长率增加,抗拉强度提高;退火后试样断裂时宏观断口呈现撕裂棱与韧窝共存的形貌,呈韧性断裂,且随着合金晶粒尺寸减小,撕裂棱和韧窝更加细小.  相似文献   

5.
研究了电脉冲连续退火对冷轧时效态AZ91镁合金带材显微组织和力学性能的影响。结果表明:电脉冲退火在较低的温度下快速完成了α-Mg基体的再结晶,可显著细化晶粒。当退火温度为210℃时,α-Mg基体发生完全再结晶,其平均晶粒尺寸由冷轧态的约30μm减小为约7μm,带材的抗拉强度由冷轧态的410 MPa减小至334 MPa,断后伸长率由冷轧态的3.7%增大至23%。电脉冲退火后带材的拉伸断裂方式由冷轧态的脆性沿晶断裂转变为韧性穿晶断裂。电脉冲在其热效应和非热效应的共同作用下快速完成再结晶过程以及β-Mg17Al12相阻碍α-Mg基体晶粒长大,是电脉冲退火细化晶粒的主要原因。  相似文献   

6.
挤锻复合成形工艺对AZ81镁合金组织和性能的影响   总被引:2,自引:1,他引:2  
阐述了一种挤锻复合成形工艺.对AZ81镁合金半连续铸坯固溶处理后挤压,并在400℃下以60%的锻压比锻压,研究了其组织和性能变化.结果表明,挤压态AZ81镁合金具有较细的晶粒组织,第二相Mg17Al12被破碎,以弥散状沿晶界分布,个别呈流线形.其屈服强度、抗拉强度和伸长率分别较铸态提高了69.9%、63.2%和164.6%;锻压后,晶粒更加细化均匀,脆性相Mg17Al1被再次粉碎,部分融入晶粒内部;其各项力学性能得到较大提高,其屈服强度、抗拉强度和伸长率分别达到229 MPa、337 MPa和15.5%,较挤压态又分别提高了9.6%、8.7%和22.3%;晶粒细化和第二相Mg17Al12分布对AZ81镁合金的性能有着重要影响;从拉伸断口金相SEM上可以看出,铸态AZ81镁合金经挤压和锻压后,断裂单元变小,断口上的韧性部分增多.  相似文献   

7.
文章研究了电磁连铸AZ31镁合金经热挤压变形后的微观组织和力学性能。结果表明,挤压过程中的动态再结晶能够显著细化晶粒,局部细晶区的平均晶粒为2μm。与铸态合金相比,挤压后的AZ31镁合金具有更细小的晶粒和更均匀的微观组织。挤压变形后产生强烈的基面织构;挤压后材料的力学性能显著提高。屈服强度、抗拉强度和断面收缩率随着挤压比的增大而增大。挤压比为25时,屈服强度、抗拉强度和断面收缩率分别为259MPa,357MPa和30.5%,比铸态合金分别提高了86.33%,64.52%和67.40%。随着挤压比的增大,晶粒细化效果更为明显,微观组织更均匀。断口形貌分析表明,挤压变形后材料由韧脆混合型断裂,转变为韧性断裂。  相似文献   

8.
研究了低挤压比(挤压比8)下挤压温度和挤压速度对AZ31B镁合金微观组织和力学性能的影响。采用光学显微镜观察了显微组织,采用材料拉伸试验测试了力学性能,并用扫描电镜观察了拉伸试样的断口形貌。结果表明:低挤压比时棒材的组织为典型的混晶组织——由发生再结晶的细小晶粒包裹未发生再结晶的粗大晶粒;300~400℃时,随挤压温度的提高,材料的伸长率升高,抗拉强度下降;在300℃挤压时,随挤压速度的提高,材料的伸长率升高,抗拉强度下降,挤压棒的拉伸断口由混合断裂转变为明显韧性断裂;250℃时综合力学性能最好,抗拉强度340 MPa,屈服强度280 MPa,伸长率23%。  相似文献   

9.
通过金相显微组织观察和断口SEM分析,研究了热处理对挤压AZ91镁合金拉伸变形与断裂行为的影响。结果表明:AZ91镁合金固溶态与挤压态相比抗拉强度变化不大,但伸长率有较大幅度的提高,晶粒尺寸有所增大;时效峰值态的抗拉强度与固溶态相比有一定的提高,但伸长率有较大幅度的降低,合金固溶时效处理后伴有强化相粒子析出。AZ91合金挤压态和固溶态的断面都有韧窝特征,为微孔形核的韧性断裂机制,而在时效峰值态的断面上则呈现出了韧性与脆性混合断裂的特征。  相似文献   

10.
利用电子显微镜、扫描电镜、拉伸试验机等研究了不同挤压温度对AZ91镁合金显微组织与力学性能的影响。结果表明:在320~410℃,AZ91镁合金挤压后发生了不同程度的动态再结晶。与铸态合金相比,不同温度挤压后AZ91镁合金的强度和伸长率均明显提高。370℃挤压的AZ91镁合金晶粒最为细小。390℃挤压的镁合金动态再结晶较为充分。410℃挤压的试样组织晶粒变得粗大且不均匀。370℃挤压的AZ91镁合金综合力学性能最好,抗拉强度、屈服强度、伸长率分别达到346、253 MPa和12.6%。  相似文献   

11.
双向双通道变通径挤压AZ31镁合金的显微组织及变形行为   总被引:1,自引:1,他引:0  
在不同温度下,采用双向双通道变通径挤压(DDE)对AZ31镁合金进行挤压,研究该工艺对其组织、力学性能、拉压不对称性和断裂行为的影响。结果表明:与均匀态AZ31镁合金相比,挤压后所得试样的晶粒显著细化,力学性能和拉压不对称性得到改善;与采用等通道角挤压工艺多道次挤压试样的力学性能相比,该工艺具有一定的优势。此外,随着挤压温度的升高,晶粒尺寸逐渐增大,显微硬度、抗拉强度和压缩率逐渐降低。从250℃到450℃,晶粒尺寸从6μm增大到26μm,硬度值(HV)从67降低到56,抗压强度从400MPa降低到343MPa,压缩率从14.8%降低到9.7%。均匀态AZ31和挤压态AZ31的压缩断口均为穿晶断裂,前者断裂机理为脆性解理断裂,后者为韧脆结合型准解理断裂。  相似文献   

12.
通过对均匀化退火后的AZ91镁合金热挤压以及随后的时效处理,分析了形变及时效过程对材料组织与性能的影响.结果表明:AZ91镁合金在320和380 ℃挤压时发生了动态再结晶,组织比铸态细化,力学性能大幅度提高;随后的时效处理进一步提高了挤压镁合金的力学性能.经380℃挤压及200℃,10 h的时效处理后,其抗拉强度σb可达357 MPa,延伸率δ达到8%.  相似文献   

13.
工艺参数对AZ91镁合金挤压组织及性能的影响   总被引:1,自引:0,他引:1  
通过对均匀化退火后的AZ91镁合金热挤压成形的试验研究,分析了AZ91镁合金热挤压成形时组织及力学性能的变化规律.结果表明:挤压态AZ91镁合金为明显的动态再结晶细化组织,且产生了(0001)面织构,细小的再结晶晶粒以及织构的存在都有利于材料的强度和塑性的改善,其抗拉强度随挤压温度、挤压比和挤压速度的升高而升高.挤压制品具有较好的综合力学性能,抗拉强度σ(h)均在310MPa~340MPa之间,延伸率δ在10% - 12%之间.  相似文献   

14.
对变形镁合金AZ61铸态试样和不同温度下的挤压成形试样的微观组织结构、室温力学性能以及拉伸断口进行了研究.结果表明,360℃的热挤压温度不能成形试样,在370、385、400℃下进行热挤压可以得到外形完整、表面光洁的试样;随着挤压温度提高,AZ61挤压试样发生再结晶的晶粒数量显著增加,达到400℃时形成均匀细小的等轴晶组织;370、385、400℃下的挤压试样断口均表现为明显的塑性断裂特征,400℃时挤压试样的抗拉强度达到297.43 MPa,屈服强度达到221.42 MPa,伸长率为22.39%,具有较好的力学性能.  相似文献   

15.
研究了不同挤压比对AZ31B镁合金显微组织、力学性能的影响。采用光学显微镜观察了显微组织,拉伸试验测试了力学性能,并配合扫描电镜观察了拉伸试样的断口形貌。结果表明:随着挤压比的增加,组织由部分动态再结晶转变为细致的完全动态再结晶,挤压比61~109时,晶粒细化程度变小;挤压比增加,强度及伸长率都增加,抗拉强度、屈服强度及伸长率最高分别达340 MPa、271.5 MPa和21.5%,但高挤压比所获得的性能提高收益小。合金拉伸断口由混合断裂转变为明显韧性断裂。合理控制挤压比可得到良好的综合性能与均匀细致的组织。  相似文献   

16.
沿板材不同挤出方向截取试样,研究了不同退火工艺条件下AZ31B镁合金板材的组织和力学性能.结果表明,AZ31B镁合金挤压态板材相组成以α-Mg为主,带有部分Al2Mg相.由于挤压变形使板材形成了平行于板平面的(0001)基面织构,造成板材的力学性能各向异性,其中以板材挤出方向呈90°的试样综合力学性能最高,其抗拉强度为274.3 N/mm2,伸长率为14.5%.退火处理过程中形成的再结晶组织,使晶粒得到细化,改善了材料的力学性能,其中以取样角度为0°的试样力学性能改善最为显著.此外,退火处理能使板材的断裂特征由供应态的脆、韧性混合断裂向韧性断裂转变.  相似文献   

17.
为了改善铸态AZ80镁合金组织和性能,对均匀化处理的铸态AZ80镁合金进行了多向锻造试验,并采用金相分析、EBSD (电子背散射衍射)分析和拉伸试验等方法,进行了显微组织和力学性能的测试与分析。结果表明:与锻造前相比,多向锻造后的AZ80镁合金的平均晶粒尺寸减小了约76μm、抗拉强度增加了66 MPa、屈服强度增加了79 MPa、断后伸长率增大了6%,断裂方式从脆性断裂转变为韧性断裂,多向锻造后合金内部晶粒为细小的等轴晶。因此,多向锻造显著地改善了AZ80镁合金的内部组织、提高了AZ80镁合金的力学性能。  相似文献   

18.
利用光学显微镜(OM)、万能试验机研究了不同挤压温度对AZ80镁合金显微组织与力学性能的影响。结果表明:AZ80镁合金经不同温度挤压后,抗拉强度和伸长率均有明显提高。当挤压比20,挤压速度2 mm/s时,360℃挤压的AZ80镁合金抗拉强度和伸长率均达到最大值,分别为367MPa和16.2%,比挤压前试样分别提高了85.4%和138.2%。360℃挤压的合金组织中原始粗大晶粒发生动态再结晶,有大量细小等轴晶产生,晶界处无明显第二相析出;挤压温度达到390℃时,组织中动态再结晶晶粒开始长大。  相似文献   

19.
主要研究了不同挤压温度下AZ31镁合金的微观组织和力学性能。结果表明:AZ31镁合金挤压试样会发生动态再结晶过程,且随着挤压温度升高晶粒的尺寸会增大;随着挤压温度的升高,试样的屈服强度和抗拉强度都会降低,伸长率会增加;在室温拉伸试验时试样发生韧性断裂。  相似文献   

20.
采用浸泡腐蚀、失重腐蚀以及电化学腐蚀中的动电位极化曲线、电化学阻抗谱等方法研究静液挤压AZ80镁合金经350℃退火热处理1、2和4 h后,在p H 6.1的0.1 mol/L Na2SO4溶液中的腐蚀行为。结果表明:退火热处理使得挤压后的AZ80镁合金晶粒发生再结晶,改变AZ80镁合金的组织和成分分布,可有效提高镁合金的腐蚀性能;但是热处理时间也会对合金的耐蚀性产生影响,其中经(350℃,1 h)退火热处理后,合金自腐蚀电位为-1.4501 V,腐蚀电流密度为0.02323 m A/cm2,耐腐蚀能力显著提高,表现出较好的综合性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号