首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过放电等离子烧结(SPS)制备纯铜及铜/石墨烯复合材料,其中石墨烯含量为1.0vol%;使用金相显微镜、扫描电子显微镜、天平和摩擦磨损实验机对制备好的材料进行金相分析、SEM观察、密度测试及摩擦磨损实验。结果表明:石墨烯弥散地分布在铜基体内细化了基体组织,并通过改变基体组织的磨损方式(由粘结磨损转变为磨粒磨损),降低了金属基体的摩擦系数,提高了材料的摩擦性能。同时发现,由于石墨烯具有吸氢的特点,引入少量的石墨烯降低了烧结体的致密度。  相似文献   

2.
采用粉末冶金方法在相同的工艺条件下制备纯铜和碳纳米管含量为10%(体积分数)的铜基复合材料。在一种销盘式载流摩擦磨损试验机上考察了不同电流条件下2种材料的载流摩擦磨损性能。结果表明:纯铜和铜基复合材料的摩擦系数和磨损率均随电流的增大而增大,但是电流对纯铜材料的影响更加显著;纯铜材料的主导磨损机制是电弧烧蚀磨损,而铜基复合材料的主导磨损机制是塑性流动变形;碳纳米管可以改善铜基复合材料的载流摩擦磨损性能。  相似文献   

3.
研究MoS_2含量对纯铜的显微组织、密度、硬度和耐磨性能的影响。采用纯铜粉和MoS_2粉末,通过机械球磨和热压法,制备含0~10%(质量分数)MoS_2颗粒的铜基复合材料。在干滑动摩擦条件下,采用销-盘式磨损实验装置,测试材料的耐磨性能,固定滑动速率为0.2 m/s。硬度测试结果显示,MoS_2含量为2.5%的复合材料的硬度达到峰值。当载荷一定时,Cu/2.5MoS_2复合材料具有最低的摩擦因数和磨损量。当载荷从1 N增加到4 N,不同含量增强相复合材料的摩擦因数均减小,同时,磨损量增大。磨损表面和磨屑的SEM照片显示,Cu/MoS_2复合材料的磨损机理由纯铜的粘着磨损为主转变为磨粒磨损和剥层磨损相结合的机制。  相似文献   

4.
采用机械球磨湿磨法在不同球磨时间下将0.5%(质量分数,下同)石墨烯与纳米铜粉混合,然后通过等离子烧结(SPS)技术制备石墨烯/铜(G/Cu)复合材料。利用SEM、XRD等对球磨过程中复合颗粒形貌及其组织结构变化规律进行分析。结果表明,当球磨时间延长至8 h时,石墨烯在铜基体中有更好的结合和分布,性能改善相对最佳,G/Cu复合材料的拉伸屈服强度为183 MPa,较纯铜提高52.5%;压缩屈服强度也由纯铜的150 MPa提高到365 MPa,提升近1.4倍;HV硬度也提高到了1350 MPa,导电率达到了66.5%IACS,综合性能得到明显提高。  相似文献   

5.
为了提高铜和石墨烯之间的界面结合强度,采用化学镀的方法使石墨烯表面均匀包裹纳米铜颗粒,然后利用粉末冶金工艺制备铜/石墨烯块体复合材料。本文研究了石墨烯含量对复合材料硬度和致密度的影响,并通过HSR-2M高速往复摩擦磨损试验机研究了铜/石墨烯块体复合材料的摩擦磨损性能。结果表明:石墨烯的加入对铜/石墨烯块体复合材料的硬度有显著的提高,但致密度随石墨烯含量的增加而降低,块体复合材料的摩擦系数和磨损率均低于未增强的纯铜。  相似文献   

6.
采用放电等离子烧结制备钇稳定氧化锆(YSZ)增强铜基复合材料。为作比较,在相同条件下制备了纯铜样品。研究了粒子含量对复合材料显微组织、相对密度、电导率和维氏硬度的影响。利用销-盘装置研究材料在不同条件下的干滑动摩擦行为。干滑动摩擦测试后,采用场发射扫描电子显微镜对磨损表面进行观察。显微组织结果表明增强粒子在铜基体中分布均匀。所有样品的相对密度都达到95%以上。当YSZ含量从0增加至5%(体积分数)时,材料的电导率从99.2%IACS降至65%IACS。Cu-5%YSZ复合材料的硬度比纯铜硬度大两倍。在加载载荷为50 N和滑动距离为1000 m条件下,纯铜的体积损失和磨损率分别为1.48 mm~3和1.5×10-3 mm~3/m。而对于5%YSZ增强的复合材料,其体积损失和磨损率分别降至0.97 mm~3和0.9×10~(-3) mm~3/m。此外,材料的摩擦因数从0.6降至0.4。磨损表面和磨粒观察结果表明纯铜的磨损机理为塑形变形和分层,而对于复合材料,磨损机理为氧化和犁沟。因此,Cu-YSZ复合材料可用于要求具有高电导率和热导率以及耐磨性能的继电器、电流接触器,开关和断路器。  相似文献   

7.
目前针对石墨烯/铜基复合材料的研究主要集中在复合材料的制备工艺对材料性能的影响上,对石墨烯/铜基复合材料表面摩擦特性影响还缺乏深入探究。采用热压烧结法制备石墨烯/铜基复合材料,并利用激光在复合材料表面完成不同尺寸和形态的微织构加工,探究织构化和石墨烯对复合材料表面摩擦特性的影响。测试结果发现:当石墨烯含量为0.5%时,该复合材料存在一个硬度峰值为140 HV0.1,比铜合金基体的硬度提高了近27%。同时具有凹坑织构的复合材料表面摩擦因数及磨痕宽度随表面织构直径的增加而呈现“下降-上升”趋势,其中凹坑直径为200μm时,各项指标达到最小,摩擦因数为0.377,磨痕宽度为231μm,可以看出合适的织构形状、尺寸以及适当的石墨烯含量使得石墨烯/铜基复合材料在减磨性和耐磨性方面有所提高。将激光表面织构化技术与粉末冶金技术相结合,为改善零部件表面摩擦磨损性能提供了一种新的工艺。  相似文献   

8.
采用铝热反应-自蔓延烧结法制备了钼质量分数分别为5%、10%、20%的Mo增强铜基复合材料。采用X射线衍射仪、光学显微镜、扫描电镜和透射电镜分析了复合材料的物相及微观组织形貌,并研究了钼添加量对复合材料力学性能、导电性能、热膨胀系数的影响。结果表明:该工艺制得的复合材料基体晶粒尺寸均达到纳米级,致密度均达到90%以上,硬度较纯铜提高40%以上,导电性能良好(72%IACS以上)。随着钼质量分数的增加,复合材料的硬度增加,致密度、电导率及热膨胀系数下降。当钼质量分数为20%时,复合材料的致密度为91.88%,电导率为72%IACS,硬度是纯铜的2倍,热膨胀系数较纯铜降低了13%,综合性能最佳。复合材料硬化的主要机理为强化相钼和铜基体弹性模量差别引起的模量硬化。  相似文献   

9.
采用选择性激光熔化法制备石墨烯/Inconel718复合材料,并评价其力学性能和摩擦磨损性能。采用XRD、SEM和拉曼光谱技术对复合材料的显微组织进行表征。结果表明,采用选择性激光熔化法制备石墨烯/Inconel 718复合材料是合理可行的,添加石墨烯纳米片对Inconel 718合金不仅产生了显著的强化效果,而且改善了摩擦学性能。1.0%石墨烯/Inconel718复合材料(质量分数)的屈服强度和抗拉强度比未添加石墨烯纳米片的Inconel 718合金分别提高了42%和53%,而其摩擦因数和磨损率分别降低了22.4%和66.8%。石墨烯纳米片增强Inconel718合金的硬度增加以及在磨损表面形成的石墨烯纳米片保护层是导致摩擦因数和磨损率降低的直接原因。  相似文献   

10.
目的 开发一种石墨烯在铜基复合材料中的均匀分散结构,制备出兼具高导电和强抗刻蚀性能的石墨烯/铜复合材料。方法 采用化学气相沉积原位生长法结合分散剂工艺,制备分散均匀石墨烯/铜基粉体复合材料。利用制备的石墨烯/铜粉体材料,采用真空热压工艺,制备了石墨烯/铜块体材料,然后用拉曼光谱、X射线粉末衍射仪和金相显微镜,考察石墨烯/铜试样的质量和形貌,最后用数字便携式涡流电导仪测量其电导率。利用自主设计的石墨烯/铜在过硫酸铵中刻蚀的实验装置,测试石墨烯/铜的抗刻蚀性能。结果 利用石墨烯/铜粉体制备的石墨烯/铜块体和铜具有相同的(111)、(200)和(220)晶面,多层石墨烯以立体胞室结构均匀分布在铜晶粒的晶界处。石墨烯/铜块体的导电率为96%IACS,明显优于文献报道的以其他方法制备的石墨烯/铜块体,并且在过硫酸铵溶液中浸泡90 min后,石墨烯/铜块的质量损失为126.6 mg, 石墨烯/铜比纯铜的抗刻蚀能力提高了37.6%,具有比铜更强的抗刻蚀性能。结论 以CVD原位生长法和真空热压法制 备的石墨烯/铜复合材料,石墨烯以立体胞室结构均匀分散在铜界面处,并且兼具高的导电性和强的抗刻蚀性能。  相似文献   

11.
目的 通过引入石墨烯和纳米金刚石,提高铜基体的硬度和抗腐蚀性能。方法 通过球磨、原位生长复合的方法,向铜粉上均匀引入纳米金刚石和石墨烯,并采用放电等离子烧结(SPS)制备石墨烯–金刚石混杂强化铜基复合材料(Gr@Dia/Cu)。利用扫描电子显微镜(SEM)、硬度计、电化学工作站对材料的微观组织形貌、显微硬度、电化学腐蚀性能进行测试和表征。此外,还利用X射线光电子能谱(XPS)对腐蚀产物进行分析,并讨论Gr@Dia/Cu的腐蚀机理。结果 微观组织分析表明,石墨烯和纳米金刚石可以均匀地分散于铜基体中。Gr@Dia/Cu的硬度达到了97.49HV,相较于纯Cu,Gr@Dia/Cu的硬度提高了55.2%。在3.5wt%的NaCl溶液中,Gr@Dia/Cu表现出较好的抗腐蚀性能,其腐蚀电压为98 mV(纯Cu为121 mV),Gr@Dia/Cu的腐蚀电流为3.082×10–7 A/cm2(纯铜为7.293×10–7 A/cm2),腐蚀速率低至0.072 3 mm/a,抗腐蚀效率提高了57.74%。Gr@Dia...  相似文献   

12.
研究了多壁碳纳米管和碳化硅包覆铜增强铜基混合纳米复合材料的显微组织和摩擦性能。碳纳米管含量为1%~4%,碳化硅含量固定在4%。铜杂化纳米复合材料的合成过程包含球磨、冷压、烧结,随后热压。对混合纳米复合材料进行了密度、晶粒尺寸和硬度测试。在不同载荷条件下,在销-钢盘摩擦仪上采用干滑动磨损评估纳米复合材料的摩擦性能。结果表明,与纯铜相比,混合纳米复合材料的晶粒尺寸明显减小,4%碳纳米管增强杂化纳米复合材料的显微硬度提高了80%。混合纳米复合材料中碳纳米管含量的增加导致材料的摩擦因数和磨损率降低。  相似文献   

13.
采用热压方法制备不同石墨烯含量的铜-石墨烯复合材料,并将其力学性能和摩擦磨损性能与用相同方法制备的铜-石墨复合材料进行对比。实验结果表明:当复合材料中石墨与石墨烯体积分数相同时,铜-石墨烯复合材料具有更高的相对密度、显微硬度以及抗弯强度。随着铜-石墨烯复合材料中石墨烯含量的增加,材料的摩擦系数及磨损率明显降低,而铜-石墨复合材料中石墨的减磨作用较小。两种复合材料的磨损机制主要为磨粒磨损和疲劳磨损。铜-石墨烯复合材料优异的力学性能和摩擦磨损性能得益于石墨烯高的润滑效率及其对铜基体的增强作用,这表明石墨烯是铜基复合材料的理想添加剂,不仅可以作为有效的润滑剂,还可以作为良好的强化相。  相似文献   

14.
采用机械球磨湿磨方法在不同球磨时间下将0.5wt%石墨烯与纳米铜粉混合,然后通过等离子烧结(SPS)方法制备石墨烯/铜(G/Cu)复合材料。利用SEM、XRD等对球磨过程中复合颗粒形貌及其组织结构变化规律进行分析,发现当球磨时间的延长至8h,石墨烯在铜基体中有更好的结合和分布,性能改善相对最佳,G/Cu的拉伸屈服强度为183MPa,较纯铜提高52.5%;压缩屈服强度也由纯铜的150MPa提高到了365MPa,提升近1.4倍;均值硬度也提高到了135HV,导电率IACS达到了66.5%,综合性能得到明显提高。  相似文献   

15.
采用电化学加超声剥离制取微纳石墨烯片,通过粉末冶金制备石墨烯增强铝合金。使用纳米压痕和摩擦磨损试验机对样品的纳米硬度、弹性模量、室温蠕变以及摩擦性能进行研究。结果表明:铝合金的纳米硬度和弹性模量随着微纳石墨烯片含量的增加呈线性提高;当微纳石墨烯片含量为0.20%(质量分数)时,石墨烯增强铝合金的纳米硬度和弹性模量比纯铝合金的分别提高66%和52%,室温平均蠕变度在保载阶段为纯铝合金的54.56%,在稳定阶段平均蠕变速率仅为纯铝合金的1/10,摩擦因数随微纳石墨烯片含量的增加而逐渐降低。微纳石墨烯片的加入使得晶粒细化、产生高位错密度和晶格畸变,提高了石墨烯铝合金复合材料的纳米硬度以及弹性模量,微纳石墨烯片对部分可动位错钉扎提高了铝合金抗蠕变性能,微纳石墨烯片存在自润滑性提高了铝合金摩擦性能。  相似文献   

16.
以化学镀结合粉末冶金法制备石墨烯/铜基复合材料(Cu@r GO/Cu)。为了改善石墨烯(r GO)在铜基体中的分散性以及两者之间的可润湿程度,首先采用化学镀工艺制备镀铜石墨烯(Cu@r GO),并通过SEM和XRD对镀层形貌和物相组成进行检测分析。为了检验Cu@r GO/Cu复合材料的摩擦性能,对Cu@r GO/Cu复合材料摩擦性质进行测试。结果表明:Cu@r GO表面均匀镀覆一层铜并附着粒径约为50 nm的纳米铜颗粒,rGO的褶皱结构以及化学镀的预处理过程有利于纳米铜颗粒长大。呈网状结构的镀铜rGO可以很好的释放掉因摩擦而产生的应力集中,形成C—Cu力转移体系,保护摩擦表面;同时散落在r GO表面的纳米铜颗粒,在摩擦过程中类似于许多"滚动轴承",有效地改善复合材料的摩擦性能。  相似文献   

17.
航空光电雷达电机换向器部位使用的纯铜材料在服役中容易发生表面损伤,传统红外激光沉积纯铜材料过程中激光吸收率较低。采用蓝光激光器对纯铜电机换向器失效部位进行送粉式激光沉积修复(所用粉末为 Cu-15Sn),研究蓝色激光工艺参数对修复形貌及修复区组织性能的影响。采用光学显微镜、扫描电镜及附带能谱仪、显微硬度计、微型摩擦磨损试验仪表征和测试修复区的微观组织、显微硬度及耐磨性能。结果表明:蓝光激光可以在较宽的工艺参数窗口范围获得良好的修复层。 修复层为典型的枝晶结构,由铜固溶体枝晶和铜锡金属间化合物共晶组成;平均显微硬度为铜基体硬度的 2.24 倍,修复区相对耐磨性为基体的 2.37 倍。修复区相对于基体硬度和耐磨性提升的原因在于快速凝固条件下形成的细小非均匀枝晶结构(固溶体和金属间化合物的混合结构)和固溶强化效应。铜基体和修复区磨损机制均为磨粒磨损、氧化磨损及黏着磨损。其中修复区主要为粘着磨损和氧化磨损,铜基体为粘着磨损和轻微氧化磨损。研究结果能够为电机换向器部位纯铜材料的高效修复提供数据支撑和理论基础,推进蓝色激光沉积再制造技术在有色金属加工领域的应用。  相似文献   

18.
《硬质合金》2019,(3):213-220
该工作通过氢氟酸溶液刻蚀MAX相粉末(Ti_3AlC_2)制备得到了具有"手风琴"形貌、粒径在2~6μm、质量良好的Ti_3C_2MXene。采用溶液共混法,将Ti_3C_2MXene用作填料,制备了环氧树脂复合材料,研究了其摩擦磨损性能,探讨了其性能改善机理。结果表明:Ti_3C_2MXene的引入,增强了复合材料的硬度,改善了其摩擦磨损性能。随着填料含量的增加,摩擦系数和磨损率都呈现出先下降后增加的趋势。填料含量为0.25%的环氧复合材料的磨损率为最低(5.13×10~(-5)mm~3/mN),比纯环氧树脂降低了80%。当含量为0.5%时,Ti_3C_2/环氧复合材料的摩擦系数为最低(0.21),比纯环氧树脂降低了70%。Ti_3C_2/环氧复合材料由于Ti_3C_2MXene的引入,其硬度得到提高。随着填料含量的增加,硬度逐渐升高。当填料含量为1.0%时,复合材料硬度达最大值,比纯环氧树脂提高了29.4%。  相似文献   

19.
通过在铜和钛的混合粉末中引入石墨烯增强相,使用超声分散和球磨法对粉末进行均匀分散、混合,采用放电等离子烧结(SPS)的方法制备石墨烯增强铜基复合材料,研究了烧结温度对复合材料组织和性能的影响规律。结果表明:随着烧结温度的升高,复合材料组织中晶粒尺寸总体上不断增大,孔隙等缺陷则相应有所减少;复合材料密度值和硬度值随着烧结温度的升高呈上升趋势,而导电率逐渐下降。在750℃的烧结温度下,复合材料导电率最高,达到56. 8%IACS;在900℃的烧结温度下,复合材料密度为8. 54 g/cm~3,达到纯铜(8. 51 g/cm~3)水平,而布氏硬度值达到66. 4 HBW,较纯铜(46. 6 HBW)提高了42. 5%。  相似文献   

20.
研究Al2O3晶须和石墨烯纳米片共增强铜基复合材料的力学性能和显微结构。采用机械合金化、真空热压烧结和热等静压工艺制备不同石墨烯含量的铜基复合材料。含0.5%石墨烯(质量分数)的铜基复合材料(GNP-0.5)具有良好的Cu/C和Cu/Al2O3界面结合性能;复合材料的硬度和抗压强度随石墨烯含量的增加呈现先增加到一个临界值后减小的趋势。研究结果表明,石墨烯和Al2O3晶须在铜基复合材料中最主要的强化机制是能量耗散和载荷传递以及石墨烯导致的晶粒细化。石墨烯与Al2O3晶须的双相混杂增强效应在于:当Al2O3/Cu界面存在微裂纹并沿着界面扩展时,嵌于铜基复合材料中的石墨烯会阻碍裂纹扩展路径,从而强化Al2O3晶须在铜基复合材料中的增强作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号