首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
添加适量稀土氧化物,采用自配的熔覆材料在ZL108表面激光熔覆制备了Ni基WC金属陶瓷复合涂层,对熔覆层进行了显微组织分析、显微硬度测量以及室温下的干滑动摩擦磨损试验。结果表明,铝合金上激光熔覆Ni基WC金属陶瓷增强熔覆层无裂纹,组织细小、致密,WC颗粒增强相与基体之间结合良好。室温下熔覆层的磨损主要为显微切削和粘着磨损,干摩擦磨损性能优良。  相似文献   

2.
为了改善高速钢的摩擦磨损性能,应用激光熔覆技术在高速钢试件表面制备出Al_2O_3熔覆网格。观察试件的金相组织,并测试显微硬度,分别对高速钢光滑试件和Al_2O_3熔覆网格试件进行了摩擦磨损试验。结果表明:Al_2O_3熔覆网格的硬度提高,Al_2O_3熔覆网格高速钢试件的磨损量降低;激光熔覆Al_2O_3网格以磨粒磨损为主,网格间隔区域高速钢基体的磨损机制包括磨粒磨损和黏着磨损;Al_2O_3熔覆网格硬度的提高、Al_2O_3硬质颗粒的弥散强化作用和Al_2O_3熔覆网格的抗黏着作用,有助于提高Al_2O_3熔覆网格高速钢试件的表面耐磨性。  相似文献   

3.
氩弧熔覆WC+Ni3Si/Ni基复合涂层的组织与耐磨性   总被引:1,自引:1,他引:0  
以Ni粉、Si粉、WC粉为原料,采用氩弧熔覆技术,在Q235钢表面制备出由WC、Ni3Si增强的Ni基耐磨复合涂层.利用XRD和SEM分析了氩弧熔覆层的相组成及显微组织,并测试了氩弧熔覆层的显微硬度和磨损性能.结果表明,熔覆区的组织是在Ni基体上均匀地分布着WC颗粒和Ni,Si枝晶,显微硬度最高可达1400 HV0.2;复合涂层中存在颗粒强化、细晶强化和同溶强化等多种强化作用,大幅度地提高了Q235钢的耐磨性能.  相似文献   

4.
采用Ni+WC基粉末激光熔覆对严重磨损的高压水除鳞机用柱塞表面进行修复,利用光学显微分析和扫描电子显微分析方法,对熔敷层、结合层和基体进行显微组织观察及能谱分析,并测定了不同区域的显微硬度.结果表明:国外试样的基体是铁素体和奥氏体组成的双相钢,过渡层为Ni25、熔覆层为Ni60+WC的试样,熔覆层的组织分布均匀,熔覆层有大量的WC质点分布,显微硬度值较高,峰值硬度为1000 HV.  相似文献   

5.
采用CO2横流激光器在21-4-N耐热钢表面熔覆添加0.5%CeO2的不同成分Ni基WC金属陶瓷复合层;对熔覆层进行了显微组织观察、显微硬度测量以及不同温度下的高温干摩擦磨损试验。结果表明,Ni21+25%WC+0.5%CeO2熔覆层组织均匀细小,高温下以粘着磨损和氧化磨损为主,干摩擦磨损性能优良。  相似文献   

6.
研究了Co基自熔合金、Ni基自熔合金 WC、Co基自熔合金 WC激光熔覆层在不同温度下的显微组织和各种化合物的硬度 ,结果表明三种材料在相同激光熔覆工艺参数下获得的熔覆层的高温显微组织、性能存在很大的差异。Ni基自熔合金 WC在 70 0℃时硬度开始显著降低且显微组织发生很大变化 ,而Co基自熔合金和Co基自熔合金 WC在 70 0℃时才开始发生变化且变化幅度较小。同时证明WC在加热过程中硬度没有显著降低。试验结果对获得具有抗高温粘着磨损的激光熔覆层有重要的理论和实际意义。  相似文献   

7.
以镍粉和WC粉为原料,采用激光熔覆法在310S奥氏体不锈钢表面制备了镍基-WC复合涂层,研究了激光熔覆层的显微形貌、物相组成和耐磨性能,并分析了复合涂层的作用机理。结果表明,激光熔覆层致密,无气孔或者其它显微缺陷,熔覆层与基材冶金结合良好;Ni基-20%WC激光熔覆层的物相为:Ni_3Cr_2、Ni_(17)W_3、Cr_4Ni_(15)W、Fe_6W_6C、Mo_6Ni_6C、W3_C和WC;不同添加量的激光熔覆层的磨损失重均小于不锈钢基材,随着WC含量的增加,熔覆层的磨损失重量呈现逐渐降低趋势。  相似文献   

8.
在45钢表面进行添加微一纳米WC颗粒的镍基自熔粉末激光熔覆处理.得到不同Ni基WC合金涂层.对熔覆层进行显微组织观察、硬度测定以及室温千摩擦磨损试验.结果表明,纳米品WC的加入能改善涂层的耐磨性能,在本试验条件下,当添加的纳米级WC和微米级WC各为15%时.涂层耐磨性能最佳;但纯纳米晶WC增强涂层耐磨性不佳,其主要磨损破坏方式随涂层中WC晶粒尺寸变化而有所变化.  相似文献   

9.
利用CO2多模激光器在轮轨材料表面进行激光熔覆,分析了铁基合金熔覆层的微观组织结构与显微硬度,利用MMS-2A微机控制摩擦磨损试验机研究了激光熔覆处理前后轮轨试件的滚动磨损与损伤性能。结果表明:轮轨试件熔覆处理后,熔覆层主要由共晶组织和枝晶组织组成;受凝固条件影响结合区附近主要为较为粗大的晶体组织,中部至表层出现胞状晶和树枝晶;激光熔覆组织中的Fe与Ni元素形成(Fe,Ni)固溶体,Cr容易与C结合形成硬度较高的碳化物。轮轨材料激光熔覆处理后表面硬度分别提高约122.6%和141.6%,未处理轮轨试件磨损率较高,出现了明显的塑性流变变形且存在明显的疲劳裂纹,磨损机制主要为疲劳磨损;轮轨试件激光熔覆处理明显降低了磨损率,磨损机制主要为轻微疲劳磨损。  相似文献   

10.
采用氩弧熔覆法对用于水轮机叶片的45碳钢进行WC涂层表面强化处理。利用扫描电镜、XRD、显微硬度计和磨损试验机对未熔覆涂层和熔覆WC涂层的45碳钢进行组织和性能分析。结果表明,氩弧电流对涂层表面形貌产生影响,电流为100 A时表面形貌最均匀。涂层组织除了稳态相Fe、WC外,还出现亚稳态W2C、Fe6W6C相。与未熔覆涂层相比,熔覆WC的碳钢表面显微硬度,磨损强度等性能显著提高。  相似文献   

11.
以微米和纳米12%Co-WC颗粒为增强相,自熔合金粉末Ni60B为粘结剂,采用激光熔覆的方法在45钢表面制备出微-纳米WC增强Ni基合金复合涂层;在MM200磨损试验机上与硬质合金磨轮进行了不同载荷和距离的干磨损试验.并利用SEM、TEM、X-射线、显微硬度计等手段分析熔覆涂层在磨损前和磨损后的显微组织和硬度,研究了各涂层在此干摩擦条件下的磨损机理.结果表明,纳米晶WC的加入能改善涂层的耐磨性能,当纳米级WC和微米级WC各为15%时,涂层耐磨性能最佳,但纯纳米晶WC增强涂层耐磨性不佳,其主要磨损破坏方式随涂层中WC晶粒尺寸变化而有所变化.  相似文献   

12.
铸造碳化钨添加量对镍基复合喷熔涂层性能的影响   总被引:1,自引:0,他引:1  
在镍基合金粉末NiCrBSi中添加不同比例的铸造碳化钨(WC),并采用氧乙炔火焰喷熔工艺在低碳钢表面制备了相应的Ni基WC复合涂层.采用金相显微镜观察了涂层的显微组织,采用湿砂橡胶轮式磨粒磨损试验机测试了涂层的抗磨粒磨损性能,并采用扫描电镜观察了喷熔粉末和喷熔层磨损后的形貌.结果表明:喷熔层的组织为在NiCr合金基体上弥散分布着不同粒度的碳(硼)化物硬质相;涂层的显微组织和WC的含量对Ni基WC喷熔层的硬度和抗磨损性能影响很大,涂层的硬度和抗磨损性能随WC添加量的增加先增加后减小;当WC的含量为35%时,Ni基体WC喷熔涂层的硬度最高,相应的抗磨粒磨损性能最好.  相似文献   

13.
利用6 kW光纤激光器在Q235钢表面激光熔覆Ni基WC复合涂层。使用扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射(XRD)、显微硬度计和磨损试验机,研究了不同WC颗粒含量下熔覆层组织形态、成分、显微硬度和磨损性能的变化规律。结果表明:熔覆层的稀释率随着WC含量的增加先减小后增加,当WC含量为20%时,稀释率最小。在光纤激光熔覆Ni基WC复合涂层的过程中,WC颗粒部分发生溶解并与其他元素相互作用形成共晶物,析出后分别以条状、块状和粒状等形态存在,随着WC含量的增加,熔覆层的组织出现细化现象。含WC的熔覆层组织中主要有γ-Ni、M_7C_3、M_(23)C_6、CrB、WC和W_2C等相存在。随着WC含量增加,熔覆层硬度增加,当WC质量分数达到40%时,熔覆层硬度可达到基体硬度的5倍以上。当WC的相对质量分数为20%时,熔覆层耐磨性能最好,耐磨性为Ni60A涂层的3倍以上。  相似文献   

14.
45钢表面激光熔覆Ni/WC性能研究   总被引:1,自引:0,他引:1  
研究了在45钢表面激光熔覆Ni60合金时,WC对熔覆层组织性能的影响,分析了Ni/WC配比对熔覆层显微硬度、耐磨性及金相组织结构的影响。结果表明,采用Ni60+30%WC合金粉末进行激光熔覆时,能得到显微硬度和耐磨性俱佳的熔覆层。  相似文献   

15.
宽带激光熔覆Ni60B+WC复合涂层的组织及性能   总被引:11,自引:0,他引:11  
采用自重送粉法在45钢表面宽带激光熔覆Ni60B+30volB 30vo1%WC复合涂,并进行现代显微分析。研究的结果表明,涂层熔覆区凝固组织主要组成相为WC,W2C,γ-Ni,M23C6及M7C3,但随层深发生明显变化,扫描速度对涂层溶覆区表面组织形貌有很大影响;在干滑动磨损条件下,涂层的主要磨损机制为WC颗粒剥落磨损及磨粒磨损。  相似文献   

16.
以WC、SiC和Ni60A粉为原料,采用氩弧熔覆技术在Q345钢基体表面制备出WC+γ-Ni5Si2增强Ni基复合涂层.利用扫描电镜(SEM)、X射线衍射仪(XRD)、显微硬度计和滑动磨损试验机对复合涂层的湿微组织、相构成、硬度及耐磨性进行了研究.结果表明:熔覆层相构成为WC、γ-Ni5Si2和γ-Ni,WC以颗粒状析出,由于氩弧熔覆时加热温度高,导致SiC分解,使Si与Ni在高温下形成了γ-Ni5Si2;熔覆层与基体呈冶金结合,无裂纹、气孔等缺陷;涂层最高硬度可达1200 HV0.2,是基体金属的4倍以上;在室温干滑动磨损试验条件下具有优异的耐磨损性能,耐磨性比基体提高了11倍.  相似文献   

17.
激光熔覆Ni-Co基合金复合涂层的组织与耐磨性   总被引:1,自引:0,他引:1  
借助于光学显微镜、X射线衍射仪、维氏硬度计、摩擦磨损试验机等研究了1Cr17Mn6Ni5N不锈钢表面激光熔覆Ni/Co基合金复合涂层的组织与干滑动摩擦磨损性能。结果表明:涂层材料由含35%WC的Ni基合金(Ni35WC)和一定量的Co基合金粉混合构成。激光熔覆Ni35WC+30%Co基合金复合涂层硬度比单一的Ni基合金熔覆层的提高50~70 HV;复合涂层的干滑动摩擦磨损速率相比不锈钢基材的下降约51%,相比Ni基合金熔覆层的下降约25%。干滑动摩擦磨损抗力的提高被认为是固溶强化、细晶强化和硬质点化合物产生的弥散硬化共同作用的结果。  相似文献   

18.
《焊接》2015,(6)
以Ni60A粉、TiC粉、TiN粉、WC粉和Co粉为原料,在Q235钢的表面用氩弧熔覆原位合成技术制备了Ti(C,N)-WC增强镍基复合材料涂层。分析了涂层的显微组织、化学成分、硬度变化和摩擦磨损特性。研究结果表明:熔覆层组织主要由富Ni的γ(Ni,Fe)相,Ti(C,N),WC和(Fe,Cr);C等组成。与Q235钢基体相比,涂层的显微硬度和耐磨性分别是基体Q235钢的6.5倍和10倍。显微硬度由表及里呈先上升后下降的阶梯状趋势,到热影响区时又明显降低。基体Q235钢的磨损机制为粘着磨损和磨料磨损,而复合涂层的的磨损形式主要是磨屑充当第三体引起的磨粒磨损。  相似文献   

19.
激光熔覆镍基金属陶瓷涂层组织与高温磨损性能的研究   总被引:1,自引:1,他引:1  
通过显微组织观察及高温干摩擦磨损试验,对激光熔覆镍基金属陶瓷涂层及其高温干摩擦磨损性能进行了研究。结果表明,Ni21+20%WC+0.5%CeO2熔覆层组织细小,高温干摩擦磨损性能最好。  相似文献   

20.
采用同步送粉方式在16Mn钢基体表面熔覆不同材料(铁基和镍基粉末)。采用的激光熔覆参数:功率为3.0 k W、熔覆速度为1000 mm/min、光斑直径为5 mm、搭接率为40%。依次对铁基和Ni25、Ni45、Ni60加不同比例的WC强化相熔覆材料进行研究,选用的WC类型为钴包WC,WC合金粉末粒径为73μm。采用带有硬度计的电子显微镜、摩擦磨损试验机以及不同腐蚀时间的方式对熔覆层的微观组织、硬度、耐磨损以及耐腐蚀进行分析。结果表明,16Mn基体的最佳熔覆材料为Ni45+20%WC粉末。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号