首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 研究不同纳米钛基杂化材料含量对水性环氧树脂涂层组织结构和耐腐蚀性能的影响。方法 以纳米钛基杂化材料为填料,采用物理共混法对水性环氧涂料进行改进,通过铅笔硬度测试、十字划格附着力测试、扫描电镜(SEM)、傅里叶变换红外光谱(FT-IR)、电化学测试以及盐雾试验等方法对涂层的力学性能、微观形貌、组织结构及耐蚀性能进行检测。结果 随着纳米钛基杂化材料含量的增加,涂层硬度逐渐上升,由HB变为3H,并且涂层的附着力保持为0级,同时涂层的防腐性能随纳米钛基杂化材料含量的增加先增强后减弱。当纳米钛基杂化材料质量分数为10%时,涂层最为致密,涂层的腐蚀电位最高,为-1.024 9 V,腐蚀电流密度最小,为8.09×10-8A/cm2,涂层低频部分的阻抗模值最大,为7.6×105?·cm2,较纯水性环氧树脂涂层提升了3倍,并且在60d的盐雾试验后涂层表面状况最佳,表现出良好的防腐性能。结论 纳米钛基杂化材料可以明显改善环氧树脂乳胶颗粒团聚的现象,提升涂层的致密性,增加涂层的铅笔硬度,增强涂层的防腐性能。  相似文献   

2.
DDS含量对有机硅/SiO_2杂化涂层性能的影响   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法,以正硅酸乙酯(TEOS)为无机相前驱体,甲基三乙氧基硅烷(MTES)和二苯基二甲氧基硅烷(DDS)为有机相前驱体,盐酸和水为催化剂,通过水解-缩聚反应制备了不同DDS含量的有机硅/SiO_2有机-无机杂化溶胶。在100℃下经12 h烘干得到有机硅/SiO_2杂化涂层。涂层性能测试表明:随DDS含量增加,硬度、附着力、耐蚀性(未加DDS耐蚀性较差)有所下降;柔韧性均为1级。低温下涂层耐热性较好。溶胶中n(TEOS):n(MTES):n(DDS)为6:9:2时涂层综合性能最佳。  相似文献   

3.
采用溶胶-凝胶法,以正硅酸乙酯(TEOS)为无机相前驱体,甲基三乙氧基硅烷(MTES)和二苯基二甲氧基硅烷(DDS)为有机相前驱体,盐酸和水为催化剂,通过水解-缩聚反应制备了不同SiO_2含量有机硅/SiO_2有机-无机杂化溶胶.经100℃烘干12 h得到有机硅/SiO_2杂化涂层.红外光谱研究表明不同TEOS含量制备的杂化材料有机、无机两相组成了强相互作用的杂化体系.采用热重分析(TGA)和耐热性试验研究不同TEOS含量有机硅/SiO_2有机-无机杂化涂层的耐热性能;采用电化学阻抗(EIS)、浸泡试验和盐雾试验研究其耐蚀性能,结果表明与未加TEOS的有机硅涂层相比,加入适量TEOS使得杂化涂层的热分解温度提高67℃,并且其耐蚀性能也得到明显提高.  相似文献   

4.
目的获得耐热性和耐蚀性好,且可紫外光固化的有机硅/SiO2杂化涂层,研究甲基苯基二甲氧基硅烷(PDMS)含量对涂层性能的影响。方法以正硅酸乙酯(TEOS)为SiO2前驱物,PDMS与γ-(甲基丙烯酰氧)丙基三甲氧基硅烷(KH-570)为有机硅前驱物,采用溶胶-凝胶法制备PDMS含量不同的有机硅/SiO2杂化溶胶,经光固化后,得到有机硅/SiO2杂化涂层。对涂层进行机械性能测试,以及红外光谱分析、热重分析和电化学阻抗谱分析。结果前驱物均水解完毕并发生缩合反应,从而得到了有机硅/SiO2杂化涂层;随着PDMS含量的增加,杂化涂层的硬度降低,耐冲击性、柔韧性和附着力良好且变化不大。结论 PDMS的加入有利于提高涂层的综合性能,当n(TEOS)∶n(PDMS)∶n(KH-570)=15∶16∶7时,有机硅/SiO2杂化涂层的耐热和耐蚀性能达到最佳。  相似文献   

5.
为了改善有机硅树脂的固化条件及其涂层的防腐蚀性能,以γ-缩水甘油醚氧丙基三甲氧基硅烷(GPTMS)、硅酸乙酯(TEOS)、二甲基二乙氧基硅烷(DMDMS)为硅烷单体,采用溶胶-凝胶法制备了含环氧基的硅树脂(ESiR),并以磷化聚苯胺(PANI)为固化剂制备了硅树脂防腐蚀涂层,分析了PANI固化含环氧基硅树脂的固化反应。通过测试固化时间、涂层的柔韧性和硬度、热失重曲线等考察了PANI添加量对涂层固化程度的影响;通过附着力、接触角、吸水率、电化学阻抗谱和极化曲线测试了PANI添加量对涂层性能的影响。结果表明:当PANI添加量(质量分数)为3 %时,得到的涂层固化效果较好,涂层既具有良好的柔韧性,又有较高的硬度;且涂层表现出较好的疏水性、附着力和优异的防腐蚀性能,其接触角为103.5°,吸水率为8.91%;涂层的干、湿附着力均为0级;腐蚀电流密度为7.58×10-8 A/cm2,电化学阻抗值达到3.4×106 Ω·cm2。  相似文献   

6.
采用差示扫描量热法(DSC)研究了不同温度下环氧底漆的固化过程,以及固化温度对固化后涂层拉拔附着力和耐阴极剥离性能的影响。并利用电化学阻抗谱(EIS)评价了涂层的耐水渗透性。结果表明,环氧底漆的固化受温度影响较大。随着固化温度升高,固化时间减少,涂层的拉拔附着力、耐阴极剥离性能有所下降,固化温度对涂层耐水渗透性影响较小。  相似文献   

7.
陈刚  刘光明  姚敬  杜楠 《表面技术》2008,37(6):47-50
采用溶胶一凝胶法,以正硅酸乙酯( TEOS)为无机相前驱体,甲基三乙氧基硅烷(MTES)和二甲基二甲氧基硅烷( DDS)为有机相前驱体,盐酸和水为催化剂,通过水解-缩聚反应制备了有机硅/Si0,有机-无机杂化溶胶。在lOO℃下经12h烘干得到有机硅/Si0,杂化涂层,红外光谱研究表明:有机、无机两相组成了强相互作用的复合体系。采用电化学阻抗(EIS),研究了杂化溶胶制备的涂层在3.5 % NaCl溶液中浸泡不同时间的阻抗行为。并根据阻抗谱特征建立了等效电路,结合等效电路图及拟合结果,分析了杂化涂层在3.5 % NaCl溶液中浸泡不同时间的耐蚀性。研究结果表明:在3.5% NaCl溶液中,有机硅/Si02杂化涂层具有良好的耐蚀性。  相似文献   

8.
有机硅/SiO2杂化涂层电化学阻抗研究   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法,以正硅酸乙酯(TEOS)为无机相前驱体,甲基三乙氧基硅烷(MTES)和二甲基二甲氧基硅烷(DDS)为有机相前驱体,盐酸和水为催化剂,通过水解-缩聚反应制备了有机硅/SiO2有机-无机杂化溶胶.在100℃下经12h烘干得到有机硅/SiO2杂化涂层,红外光谱研究表明:有机、无机两相组成了强相互作用的复合体系.采用电化学阻抗(EIS),研究了杂化溶胶制备的涂层在3.5%NaCl溶液中浸泡不同时间的阻抗行为.并根据阻抗谱特征建立了等效电路,结合等效电路图及拟合结果,分析了杂化涂层在3.5%NaCl溶液中浸泡不同时间的耐蚀性.研究结果表明:在3.5%NaCl溶液中,有机硅/SiO2杂化涂层具有良好的耐蚀性.  相似文献   

9.
目的实现有机硅树脂的室温固化并提高其耐热性,从而制备室温固化耐高温涂层。方法以硅羟基为活性官能团的有机硅树脂作为主体树脂,选择自制的聚硅氮烷作为固化剂,添加碳化硅和玻璃粉等耐热颜填料,制备一种室温固化的有机硅/聚硅氮烷耐高温涂料。采用红外光谱扫描仪和热失重分析仪分别对树脂的固化过程和耐热性能进行表征。加入填料后,对固化后涂层的铅笔硬度、抗冲击性、柔韧性和耐高温性能进行评价。采用金相显微镜对热处理后的涂层形貌进行观察。结果硅树脂和聚硅氮烷在室温下混合反应72 h后,涂覆层硬化成膜,其红外谱图中N—H的弯曲振动峰消失,归属于Si—N的吸收峰强度呈减弱趋势,证明了二者之间发生了化学反应。随着聚硅氮烷加入量的增加,样品热失重率减小且残重增加,其中加入32.5%聚硅氮烷的固化物样品,400℃的失重率仅为0.76%,失重5%时的温度高达500℃以上。固化后涂层的附着力为0级,柔韧性为1级。热处理后,涂层表面的平整度变好,附着力明显提高。结论聚硅氮烷不仅能常温固化硅树脂,改善其附着力,而且明显提高了有机硅树脂的耐热性。基于聚硅氮烷固化有机硅树脂制备的涂层具有良好的柔韧性和耐高温特性,最高耐温达到400℃以上。  相似文献   

10.
以丙烯酸(AA)、丙烯酸丁酯(BA)、丙烯酸羟乙酯(HEA)、甲基丙烯酸甲酯(MMA)、正硅酸乙酯(TEOS),γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH-570)、甲基三乙氧基硅烷(MTES)和二苯基二甲氧基硅烷(DDS)为原料,采用溶液聚合法合成有机硅/SiO_2杂化溶胶改性丙烯酸树脂。探讨不同种类有机硅/SiO_2杂化溶胶及含量对树脂性能的影响。通过红外光谱表征了溶胶及固化后杂化涂层的结构,并测试了漆膜的物理性能以及通过电化学阻抗和浸泡实验对涂膜耐蚀性进行分析。结果表明:有机硅/SiO_2杂化溶胶成功地接枝到水性丙烯酸树脂上。当有机硅/SiO_2杂化溶胶添加量为10%(质量分数)时,杂化涂层具有良好的柔韧性和附着力,涂膜硬度6H,光泽度104,漆膜长期稳定,具有优异的耐蚀性。  相似文献   

11.
以钛酸丁酯(TBT)为前驱物、盐酸为催化剂、异丙氧基三(焦磷酸二辛酯)钛(TTPO)为表面改性剂,采用溶胶-凝胶法制备TTPO改性的纳米TiO_2/有机硅杂化涂层,研究了TTPO的用量对TiO_2有机硅杂化涂层膜结构和相关性能的影响。采用红外光谱(FT-IR)、X射线衍射(XRD)、扫描电镜(SEM)、紫外吸收光谱(UV-vis)、铅笔硬度法和润湿性实验等分析手段对涂层进行了表征。结果表明:适量的TTPO可以明显提高纳米TiO_2与膜层的相容性,得到均匀平整、结构致密、硬度较高且疏水性增强的杂化涂层。然而,随着TTPO用量的增加,杂化涂层的膜结构出现孔洞,尽管疏水性有所增强,但涂层硬度也随之降低。当TTPO/TBT的摩尔比为1:0.01时,涂层具有较高的硬度和较强的疏水性。  相似文献   

12.
通过在环氧树脂E44/聚醚胺D400体系中引入三种不同结构的活性稀释剂(C12、207和ERD512),研究了稀释剂对环氧树脂粘度及其固化涂层硬度、附着力和抗冲击性能的影响。结果表明,随着活性稀释剂加入量的提高,环氧树脂粘度和固化涂层的硬度均逐渐降低,附着力先增大后减小;在环氧树脂中加入适量的活性稀释剂,可以提高固化涂层的抗冲击性能,双环氧基活性稀释剂ERD512的增韧效果最明显。  相似文献   

13.
《铸造技术》2017,(10):2389-2392
研究了淬火温度分别为940、1 000、1 060℃时高硼低碳铸钢显微组织、力学性能和耐磨性的变化规律。结果表明:不同淬火温度下,钢的组织均由马氏体+硼化物+少量的残余奥氏体组成。随着淬火温度逐渐升高,硼化物由连续的网状向孤立的杆、块和粒状转化;硬度先上升后平缓下降,磨损失重量先下降后增大;经1 000℃×1.5 h水冷淬火+200℃×3 h回火后,钢的硬度上升到最大值53 HRC,磨损失重量下降到最小值14.2 mg,相对940℃时的硬度和耐磨性分别提高了1.07倍和2.28倍。  相似文献   

14.
SiO2 对镁合金阴极电泳涂层耐磨性的影响   总被引:1,自引:0,他引:1  
朱阮利  张津  高帅  倪娜 《表面技术》2015,44(7):27-33
目的提高镁合金有机涂层的耐磨性能。方法用KH450硅烷改性Si O2粉体,并充分分散于电泳漆中。用KH460硅烷预处理镁合金表面,并阴极电泳复合涂层。通过铅笔硬度测试、摩擦磨损实验、画圈附着力测试、NMP(N甲基吡咯烷酮)试验和Machu试验,分别评价阴极电泳涂层的硬度、耐磨性能、附着力、抗NMP溶胀性能和耐蚀性,并通过扫描电子显微镜和光学显微镜对磨痕形貌进行分析。结果在镁合金用KH460预处理的前提下,添加Si O2粉体使涂层硬度由4H上升为5H,同时也提高了涂层的耐蚀性,并且涂层的附着力保持为1级,抗NMP溶胀性能仍120 h。在预处理镁合金基体上制得的原漆涂层和添加纳米Si O2的涂层耐磨性较好,磨痕深度与涂层厚度的比值分别为0.47和0.475,摩擦系数均低于0.4;在未预处理镁合金基体上制备的原漆涂层和在预处理镁合金基体上制备的添加微米Si O2的涂层耐磨性较差,磨痕深度与涂层厚度的比值分别为0.665和0.673,摩擦系数均大于0.7。四种涂层磨损破坏的机制主要为疲劳破坏。结论 Si O2粉体的加入可以有效提高涂层的耐蚀性和铅笔硬度,同时不降低涂层的附着力和抗NMP溶胀性能。用硅烷对镁合金进行预处理,向电泳漆中添加硅烷处理的纳米Si O2,可有效提高阴极电泳涂层的耐磨性。  相似文献   

15.
采用盐雾和盐水浸泡加速实验,结合ATR-FTIR,SEM,AFM表面分析技术及EIS电化学分析技术,考察纳米CeO_2作为涂层颜料对聚氨酯涂层防腐性能的影响。结果表明,添加纳米CeO_2能改善涂层的防腐性能,延缓聚氨酯涂层的阻抗衰减进程,但同时会削弱涂层在金属基体上的附着力。当添加量较低时(≤0.5%,质量分数),由于H_2O和侵蚀性离子渗入聚氨酯层,纳米CeO_2水解流失,导致涂层阻抗谱随时间降低较快;当添加量达到1.0%时,涂层阻抗在较长时间内保持较高值,这可能是由于纳米CeO_2在涂层微孔中发生水解膨胀,压缩了孔隙通道,同时Ce(Ⅲ,Ⅳ)迁移到铝合金/涂层界面,抑制了腐蚀活性位点,因而减缓了阻抗的衰减进程。然而,在盐雾实验后期,CeO_2进一步水解会导致Ce~(4+)的溶解流失,造成微孔隙的再次疏通和涂层阻抗的快速下降。过量添加(1.0%)还会削弱涂层在铝合金基体上的附着力。长期浸泡实验结果表明:添加1.0%CeO_2可基本实现Ce~(4+)溶解和流失的平衡,增强聚氨酯涂层的防腐性能。  相似文献   

16.
以巯基丙基三甲氧基硅烷(MPTMS)为有机前驱体,以正硅酸四乙酯(TEOS)为无机前驱体,盐酸为催化剂,经水解-缩合反应在Cu合金H62表面制备了高固含量的有机-无机杂化溶胶-凝胶涂层。利用红外光谱仪、动态光散射粒度分析仪对涂层的化学成分和溶胶粒子的平均直径进行表征,利用SEM观察涂层的表面和截面形貌,利用拉脱法附着力测试仪和电化学工作站对涂层的附着力和耐蚀性进行表征。结果表明:TEOS的加入有利于提高涂层的热稳定性。随着TEOS含量的增加,溶胶粒子的尺寸呈上升趋势,过量的TEOS会使涂层表面和内部产生孔洞和裂纹等缺陷。当TEOS和MPTMS的摩尔比为0.6时,涂层的交联密度较大且涂层缺陷较少,涂层的耐蚀性最佳。  相似文献   

17.
选用钛酸酯偶联剂(TTPO)和硅烷偶联剂(TMSPM)为表面修饰剂,采用钛酸丁酯(TBOT)通过溶胶-凝胶法合成了稳定的二氧化钛溶胶,并与硅烷偶联剂(GPTS)形成的有机硅溶胶杂化,经涂膜和固化,制备了系列TiO2-有机硅涂层材料。通过不同方法对杂化涂层的微结构、光学和机械性质进行了表征。结果表明:所得到的杂化涂层,在可见光范围内的透过率均在90%以上;当Ti的摩尔分数在10%~60%范围内时,涂层折射率在1.50~1.76范围内可调;涂层的铅笔硬度达到7H~9H,疏水角为94°~100°。  相似文献   

18.
采用溶胶-凝胶法,以γ-环氧丙氧丙基三甲氧基硅烷(γ-GPTMS)和正硅酸乙酯(TEOS)为前驱体,在2A12铝合金表面制备了稀土铈盐(Ce(NO3)3)掺杂的有机-无机杂化膜,研究了铈盐掺杂浓度和涂层固化温度等工艺条件.通过极化曲线和电化学阻抗谱(EIS),比较了掺杂与未掺杂有机-无机硅烷杂化膜、铬酸盐转化膜和RE转化膜在3.5%NaCl(质量分数)溶液中的耐腐蚀性能.测试结果均表明,铈盐掺杂硅烷杂化膜的极化电阻比掺杂前增大了约13倍,并显著高于铬酸盐转化膜和RE转化膜.  相似文献   

19.
利用电化学阻抗谱(EIS)、附着力测试等测试手段对清漆喷砂涂层,带锈清漆涂层以及不同植酸含量的带锈涂层的干湿态附着力和耐腐蚀等性能进行了评价。结果表明,添加植酸明显改善了带锈涂装涂层的防腐蚀性能。植酸的添加提高了涂层的附着力,增强了涂层屏蔽作用。此外,植酸还具有缓蚀作用,减缓了金属界面的腐蚀。综合评定植酸添加量为3%时,带锈涂层防腐蚀性能较好。  相似文献   

20.
目的 研究巯基有机硅溶胶-凝胶涂层对铜合金H90的保护性能。方法 以不同比例的巯基丙基三甲氧基硅烷(MAPMS)与正硅酸乙酯(TEOS)为前驱体,以乙酸作为催化剂,制备含巯基官能团的溶胶-凝胶,并通过浸涂法将该溶胶-凝胶涂层施加到铜合金H90上,并在120 ℃下烘干成膜。利用电化学、盐雾、接触角等一系列的手段考察巯基有机硅溶胶-凝胶涂层在铜合金H90基材上的防腐蚀、疏水性、铅笔硬度等性能。结果 当MAPMS与TEOS物质的量比达到1.5∶1时,自腐蚀电流密度为1.16×10?8 A/cm2,膜层铅笔硬度可达5H,在H90黄铜上的附着力等级达到0级,具有最佳的防腐蚀性能。中性盐雾测试中,物质的量比为1∶1的测试组在第8 d时出现了少量腐蚀斑点,但在接下来的30 d内,腐蚀并未扩大;其他测试组在30 d测试中,未出现明显腐蚀。结论 巯基有机硅溶胶-凝胶涂层具有良好的硬度以及附着力,并能显著提高铜合金H90表面防腐蚀性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号