首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Osteoconduction and non‐toxic bioresorbability can be achieved by combining Bioglass® particles and Poly (3‐hydroxybutyrate) (P3HB) fibre meshes in novel composites for tissue engineering scaffolds. Bioglass® coatings readily induce hydroxyapatite (HA) formation on fibre surfaces in vitro, while biodegradable P3HB yields non toxic degradation products. In the present investigation, P3HB meshes were used, which were generated by means of an embroidery technology on the basis of yarns with 12 and 24 filaments with diameters of ~ 30 μm. Bioglass® particles of average particle size < 5 μm were used to produce coatings on P3HB meshes by slurry dipping. By varying the concentration of Bioglass® particles in aqueous slurry, coating thickness and homogeneity could be controlled. Optimally coated meshes were incubated in simulated body fluid (SBF) for 3, 7, 14, and 21 days to detect formation of HA, as a qualitative assessment of bioactivity. Scanning electron microscopy (SEM) observations coupled with X‐ray diffraction analyses revealed the presence of HA crystals on mesh surfaces following 3 days of incubation in SBF. The amount of HA crystals was shown to increase with incubation time in SBF. Minimal polymer degradation was seen after 21 days in SBF, suggesting a suitable time frame for tissue replacement. The novel Bioglass® /P3HB composite meshes developed here are potential materials for bone tissue engineering scaffold applications.  相似文献   

2.
Poly(DL-lactide) (PDLLA) foams and bioactive glass (Bioglass®) particles were used to form bioresorbable and bioactive composite scaffolds for applications in bone tissue engineering. A thermally induced phase separation process was applied to prepare highly porous PDLLA foams filled with 10 wt % Bioglass® particles. Stable and homogeneous layers of Bioglass® particles on the surface of the PDLLA/Bioglass® composite foams as well as infiltration of Bioglass® particles throughout the porous network were achieved using a slurry-dipping technique. The quality of the bioactive glass coatings was reproducible in terms of thickness and microstructure. In vitro studies in simulated body fluid (SBF) were performed to study the formation of hydroxyapatite (HA) on the surface of the PDLLA/Bioglass® composites, as an indication of the bioactivity of the materials. Formation of the HA layer after immersion in SBF was confirmed by X-ray diffraction and Raman spectroscopy measurements. The rate of HA formation in Bioglass®-coated samples was higher than that observed in non-coated samples. SEM analysis showed that the HA layer thickness rapidly increased with increasing time in SBF in the Bioglass®-coated samples. The high bioactivity of the developed composites suggests that the materials are attractive for use as bioactive, resorbable scaffolds in bone tissue engineering.  相似文献   

3.
Bioresorbable and bioactive tissue engineering scaffolds based on bioactive glass (45S5 Bioglass®) particles and macroporous poly(DL-lactide) (PDLLA) foams were fabricated. A slurry dipping technique in conjunction with pretreatment in ethanol was used to achieve reproducible and well adhering bioactive glass coatings of uniform thickness on the internal and external surfaces of the foams. In vitro studies in simulated body fluid (SBF) demonstrated rapid hydroxyapatite (HA) formation on the surface of the composites, indicating their bioactivity. For comparison, composite foams containing Bioglass® particles as filler for the polymer matrix (in concentration of up to 40 wt %) were prepared by freeze-drying, enabling homogenous glass particle distribution in the polymer matrix. The formation of HA on the composite surfaces after immersion in phosphate buffer saline (PBS) was investigated to confirm the bioactivity of the composites. Human osteoblasts (HOBs) were seeded onto as-fabricated PDLLA foams and onto PDLLA foams coated with Bioglass® particles to determine early cell attachment and spreading. Cells were observed to attach and spread on all surfaces after the first 90 min in culture. The results of this study indicate that the fabricated composite materials have potential as scaffolds for guided bone regeneration.  相似文献   

4.
Five types of solid and porous polyurethane composites containing 5–20 wt.% of Bioglass® inclusions were synthesized. Porous structures were fabricated by polymer coagulation combined with the salt-particle leaching method. In-vitro bioactivity tests in simulated body fluid (SBF) were carried out and the marker of bioactivity, e.g. formation of surface hydroxyapatite or calcium phosphate layers upon immersion in SBF, was investigated. The chemical and physical properties of the solid and porous composites before and after immersion in SBF were evaluated using different techniques: Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA) and Thermogravimetric Analysis (TGA). Moreover the surface structure and microstructure of the composites was characterised by Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM), respectively. Mercury intrusion porosimetry, SEM and microtomography (μCT) were used to determine pore size distribution and porosity. The fabricated foams exhibited porosity >70% with open pores of 100–400 μm in size and pore walls containing numerous micropores of <10 μm. This pore structure satisfies the requirements for bone tissue engineering applications. The effects of Bioglass® addition on microstructure, mechanical properties and bioactivity of polyurethane scaffolds were evaluated. It was found that composite foams showed a higher storage modulus than neat polyurethane foams. The high bioactivity of composite scaffolds was confirmed by the rapid formation of hydroxyapatite on the foam surfaces upon immersion in SBF.  相似文献   

5.
Porous poly(D,L-lactide) PDLLA foams containing 0, 5 and 20 wt% of TiO2 nanoparticles were fabricated and characterised. The addition of Bioglass® particles was also studied in a composite containing 5 wt% of Bioglass® particles and 20 wt% of TiO2 nanoparticles. The microstructure of the four different foam types was characterised using scanning electron microscopy (SEM) and their mechanical properties assessed by quasi-static compression testing. The in vitro behaviour of the foams was studied in simulated body fluid (SBF) at three different time points: 3, 21 and 28 days. The degradation of the samples was characterised quantitatively by measuring the water absorption and weight loss as a function of immersion time in SBF. The bioactivity of the foams was characterised by observing hydroxyapatite (HA) formation after 21 days of immersion in SBF using SEM and confirmed with X-ray diffraction (XRD) analysis. It was found that the amount of HA was dependent on the distribution of TiO2 nanoparticles and on the presence of Bioglass® in the foam samples.  相似文献   

6.
Biocompatibility and bioactivity of polymer matrix composites containing titanium dioxide (TiO2) nanoparticles were investigated. The solvent casting method was used to prepare poly (d,l-lactic acid) (PDLLA) films with 0 and 20 wt.% TiO2 nanoparticles and with 20 wt.% TiO2 mixed with 5 wt.% micrometre-sized (< 5 μm) Bioglass® particles. The samples were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy Dispersive X-ray (EDX) analyses. A Zygo® light interferometer was used to examine the surface roughness of the samples. The bioactivity and the surface reactivity of the materials were determined by investigating the formation of hydroxyapatite (HA) on the surface of samples upon immersion in simulated body fluid (SBF) for up to 28 days. Heterogeneous distributed HA crystals were found on composite films containing TiO2 after 21 days exposure to SBF. Cell cytotoxicity and viability were determined by using live/dead and MTS assay on osteoblast-like MG-63 cells. The PDLLA films containing different concentrations of TiO2 and Bioglass® particulate inclusions showed no effect on cell viability in live/dead assay after incubation period of 7 days. All three groups of samples demonstrated significant increase in relative metabolic activity in MTS assay after 7 days incubation (while a slower proliferation rate was obtained for cells on the PDLLA film containing both TiO2 and Bioglass® compared to the Thermanox® control). The bioactive behaviour of the nanocomposites may make them attractive materials for fabrication of tissue engineering scaffolds.  相似文献   

7.
采用溶解共混法制备含30%硅灰石的聚乳酸/硅灰石新型生物医用复合物膜.将其放入37.5℃模拟体液中,分别在1,3和6d取出样品,从沉积物形成速度以及沉积物的量考察复合物的生物活性,并与目前研究应用较多的聚乳酸/羟基磷灰石、聚乳酸/磷酸三钙以及聚乳酸/珍珠层粉进行比较。扫描电镜和红外光谱分析表明,聚乳酸/硅灰石、聚乳酸/羟基磷灰石和聚乳酸/磷酸三钙复合物膜的生物活性明显优于聚乳酸/珍珠层粉,这三种复合物膜表面在浸泡一天时表面出现类骨羟基磷灰石沉积物,6d时表面完全被沉积物覆盖。聚乳酸/硅灰石复合物材料具有较好的生物活性,适于应用在骨修复以及骨组织工程领域。  相似文献   

8.
Hydroxycarbonate apatite (HCA) coatings on the surface of bioresorbable materials for bone tissue engineering scaffolds were produced using macroporous poly(DL-lactide) (PDLLA) foams impregnated by calcium carbonate in vaterite crystalline form. Stable and homogeneous vaterite deposition on PDLLA foams was achieved using a slurry dipping technique. In vitro studies in simulated body fluid (SBF) were performed to induce formation of (HCA) on the surface of vaterite/PDLLA composite foams. HCA was detected after immersion of foams in SBF for 7 days. Hence, depositing vaterite on materials followed by immersion in SBF is confirmed to induce HCA coatings on the surface of the material. The HCA coated, bioactive and resorbable PDLLA foams are intended for use as bone tissue engineering scaffolds.  相似文献   

9.
The nano-sized hydroxyapatite (n-HA) was incorporated into poly(d,l-Lactide) (PDLLA) to form a bioactive and biodegradable composite for application in hard tissue replacement and regeneration. Thin film of PDLLA composite containing 20 mass% of n-HA fillers was successfully developed through integration of solvent co-blending and hot pressing techniques. firstly, n-HA and PDLLA were chemically synthesized, respectively, then mixed together and homogeneously dispersed in N,N-dimethyl formamide(DMF) solvent, finally, the dried blended hybrid containing PDLLA matrix and n-HA fillers was put into the mould and compacted by hot-pressing machine under 8 MPa pressure at 110 °C for 15 min. In vitro studies were conducted using the simulated body fluid(SBF). Composite specimens were soaked in SBF from 1 day to 21 days prior to surface analysis. Results obtained from scanning electron microscopy(SEM) examination, Energy dispersive X-ray detector(EDX) analysis and X-ray diffraction (XRD) analysis showed that a layer of non-stoichiometric apatite formed within 7 days on HA/PDLLA composite surface after its immersion in SBF, demonstrating moderate in vitro bioactivity of n-HA/PDLLA composite, though a moderate rate of apatite formation in SBF was found on initial stage of immersion periods for n-HA/PDLLA composite, compared to the other biomaterial composite. This type of composite film exhibited certain desirable bioactive characteristics, and they are promising bone candidates to develop novel bioactive composites for biomedical application.  相似文献   

10.
Nano phase hydroxyapatite (HA) bioceramics have gained importance in the biomedical field due to their superior biological properties. In this study, nanostructured HA coating was used to increase the bioactivity of a piezoelectric bioceramic, barium titanate (BT). Early reports on the influence of collagen piezoelectricity in remodeling of bone have attracted many researchers to piezoelectric bioceramics such as BT. Hence; porous BT was used as the matrix of a new bone graft composite and then coated with nanostructured HA. BT ceramic was foamed via a direct foaming method with a spray of polyurethane foam. The surface of the foam voids was coated with HA via sol–gel and dip‐coating methods. X‐ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) techniques were used to characterize the prepared coated foam. XRD and TEM analysis showed that the HA coating had a nanostructure with crystallite size of 20–30 nm. SEM images of the prepared samples showed that the HA coating has about 25 µm thickness. The bioactivity of the prepared composite was evaluated in an in vitro study. The variation of Ca2+ and PO43? ions versus time in simulated body fluid (SBF) solution were measured by inductively coupled plasma (ICP) analysis during 1 month and the results showed that the mineralization of calcium phosphate (Ca‐P) on HA coated porous samples was much more than that in non‐coated sample. The SEM micrographs and energy‐dispersive X‐ray spectroscopy (EDS or EDX) analysis of the samples after 1 month of immersing in SBF confirm that Ca‐P phase (bone‐like apatite) was significantly mineralized on HA coated porous BT samples. It was concluded that the nanostructured HA coating would improve the bioactivity of BT foam.  相似文献   

11.
TiO2 foam-like scaffolds with pore size ~300 μm and >95% porosity were fabricated by the foam replication method. A new approach to improve the structural integrity of the as-sintered foams, which exhibit extremely low compression strength, was explored by coating them with poly-(d,l-lactic acid) (PDLLA) or PDLLA/Bioglass® layers. The PDLLA coating was shown to improve the mechanical properties of the scaffold: the compressive strength was increased by a factor of ~7. The composite coating involving Bioglass® particles was shown to impart the rutile TiO2 scaffold with the necessary bioactivity for the intended applications in bone tissue engineering. A dense hydroxyapatite layer formed on the surface of the foams upon immersion in simulated body fluid for 1 week.  相似文献   

12.
Titanium dioxide (TiO2) nanoparticles were investigated for bone tissue engineering applications with regard to bioactivity and particle cytotoxicity. Composite films on the basis of poly(d,l lactid acid) (PDLLA) filled with 0, 5 and 30 wt% TiO2 nanoparticles were processed by solvent casting. Bioactivity, characterised by formation of hydroxyapatite (HA) on the materials surface, was investigated for both the free TiO2 nanoparticles and PDLLA/TiO2 composite films upon immersion in supersaturated simulated body fluid (1.5 SBF) for up to 3 weeks. Non-stoichiometric HA nanocrystals (ns-HA) with an average diameter of 40 nm were formed on the high content (30 wt% TiO2) composite films after 2 weeks of immersion in 1.5 SBF. For the pure PDLLA film and the low content composite films (5 wt% TiO2) trace amounts of ns-HA nanocrystals were apparent after 3 weeks. The TiO2 nanopowder alone showed no bioactivity. The effect of TiO2 nanoparticles (0.5–10,000 μg/mL) on MG-63 osteoblast-like cell metabolic activity was assessed by the MTT assay. TiO2 particle concentrations of up to 100 μg/mL had no significant effect on MG-63 cell viability.  相似文献   

13.
Polyetheretherketone (PEEK) and PEEK/Bioglass® coatings were produced on shape memory alloy (NiTi, Nitinol®) wires using electrophoretic deposition (EPD). Best results were achieved with suspensions of PEEK powders in ethanol in the range (1–6 wt%), using a deposition time of 5 minutes and applied voltage of 20 Volts. EPD using these parameters led to high quality PEEK coatings with a homogeneous microstructure along the wire length and a uniform thickness of up to 15 μm without development of cracks or the presence of large voids. Suspensions of PEEK powders in ethanol with addition of Bioglass® particles (0.5–2 wt%) (size < 5 μm) were used to produce PEEK/Bioglass® coatings. Sintering was carried out as a post EPD process in order to densify the coatings and to improve the adhesion of the coatings to the substrate. The sintering temperature was 340 °C, sintering time 20 min and heating rate 300 °C/h. Sintering led to uniform and dense PEEK and PEEK/Bioglass® coatings without any cracks. The bioactive behaviour of PEEK/Bioglass® composite coatings was investigated by immersion in acellular simulated body fluid (SBF) for up to two weeks. As expected, hydroxyapatite crystals formed on the surface of the coated wires after 1 week in SBF, confirming the bioactive character of the coatings. The results have demonstrated for the first time that EPD is a very convenient method to obtain homogeneous and uniform bioactive PEEK and PEEK/Bioglass® coatings on Nitinol® wires for biomedical applications.  相似文献   

14.
This study investigated the hydroxyapatite (HA) coating on metal implants in order to enhance their bioactive properties. In this study, HA coatings were formed on the surfaces of commercially pure titanium (c.p. Ti) and Ti–7.5Mo which were acid-etched and subsequently alkali-treated before samples were soaked in simulated body fluid (SBF). Specimens of c.p. Ti and Ti–7.5Mo were etched in either H3PO4 or HCl, and subsequently treated in NaOH. The surfaces of acid-etched c.p. Ti showed a porous structure, whereas those of acid-etched Ti–7.5Mo showed some grinding marks, but no porosity. After subsequent alkali treatment in NaOH, the surfaces of both the c.p. Ti and Ti–7.5Mo substrates exhibited microporous network structures. The specimens were then immersed in SBF at 37 °C for 28 days. Apatite began to deposit on acid-etched and NaOH-treated Ti–7.5Mo within 1 day after immersion in the SBF. After 28 days of immersion in the SBF, a dense and uniform layer was produced on the surfaces of all samples. The HA formation rate was the highest for HCl and NaOH-pretreated samples, and the results of EDS and XRD showed that much more intensive peaks of HA appear on the specimens of HCl and NaOH-treated Ti–7.5Mo than on any other sample. Thus, this method of apatite coating Ti–7.5Mo appears to be promising for artificial bone substitutes or other hard tissue replacement materials with heavy load-bearing applications due to their desirable combination of bioactivity, low elastic modulus, and low processing costs.  相似文献   

15.
Hydroxyapatite (HA) and HA/bioactive glass (49S) films were deposited on Si(100) substrates by a sol–gel dip‐coating method. The microstructure and in vitro bioactivity of the films were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X‐ray photoelectron spectroscopy (XPS). Polycrystalline HA and amorphous bioactive glass films were obtained after annealing at 600 and 400 °C, respectively. The crystallization temperature of HA was determined to be around 568 °C. The surfaces of the HA films were covered with an apatite layer consists of spherulites formed by nanosized needle‐like aggregates after the soaking in simulated body fluid (SBF) for 10 days, while amorphous HA/bioactive glass surface was covered with larger spherical crystallites. Both XPS and EDS results obtained from HA/bioactive glass film, after soaking in SBF, showed increasing P amounts on the surface at the expense of Si. The higher density of the newly formed layer on HA/bioactive glass surface than that of the HA surface after 10 days of soaking was evidence of increased reaction rate and apatite forming ability when bioactive glass layer is present on the HA films.  相似文献   

16.
Particulate hydroxyapatite (HA) was incorporated into polyhydroxybutyrate (PHB) to form a bioactive and biodegradable composite for applications in hard tissue replacement and regeneration. HA/PHB composite containing 10, 20, and 30 vol.% of HA was made for in vitro evaluation. In vitro studies were conducted using an acellular simulated body fluid (SBF). Composite specimens were immersed in SBF at 37 °C for various periods of time prior to surface analysis and mechanical testing. Results obtained from scanning electron microscopic (SEM) examination, thin film X-ray diffraction (TF-XRD) analysis, and Fourier transform infrared (FTIR) spectroscopy showed that a layer of bone-like apatite formed within a short period on HA/PHB composite after its immersion in SBF, demonstrating high in vitro bioactivity of the composite. The bioactivity and mechanical properties of the composite could be changed by varying the amount of HA in the composite. Dynamic mechanical analysis (DMA) revealed that the storage modulus (E′) of HA/PHB composite increased initially with immersion time in SBF, due to apatite formation on composite surface and decreased after prolonged immersion in SBF, indicating degradation of the composite in a simulated body environment. HA/PHB composite thus has the potential for its intended applications.  相似文献   

17.
The bioactivity and biocompatibility of Bioglass®-reinforced high-density polyethylene composite (Bioglass®/HDPE) have been evaluated in simulated body fluid (SBF) and by in vitro cell culture, respectively. The formation of a biologically active hydroxy-carbonate apatite (HCA) layer on the composite surface after immersion in SBF was demonstrated by thin-film X-ray diffraction, infrared spectroscopy and scanning electron microscopy, indicating the in vitro bioactivity of Bioglass®/HDPE composites. The HCA layer was formed on the 40 vol% composite surface within 3 days immersion in SBF at a formation rate comparable to those on bioactive glass-ceramics, showing that in vitro bioactivity could be obtained in a composite. Furthermore, the composite was biocompatible to primary human osteoblast-like cells. In comparison with unfilled HDPE and tissue culture plastic control, a significant increase in cellular metabolic activity was found on the composite. Therefore, Bioglass®/HDPE composites have a promising biological response as a potential implant material.  相似文献   

18.
In order to improve filler dispersion and phase compatibility between poly(d,l-lactide) (PDLLA) and inorganic bioactive glass (BG) particles, and to enhance the mechanical properties of PDLLA/BG composites, the silane coupling agent 3-glycidoxypropyltrimethoxysilane (KH570) was used to modify the surface of BG particles (represented by KBG). The structure and properties of PDLLA/BG and PDLLA/KBG composites were investigated by mechanical property testing and scanning electron microscopy (SEM). This study demonstrated that the Guth and Gold models can be combined to predict the Young’s modulus of the composites. The Pukanszky modulus showed that the interaction parameter B of PDLLA/KBG composites was higher than that of the PDLLA/BG, which indicates that there is a higher interfacial interaction between the PDLLA and KBG. The composites were incubated in simulated body fluid (SBF) at 37°C to study the in vitro degradation and bioactivity of the composites and to detect bone-like apatite formation on their surfaces.  相似文献   

19.
A new family of multifunctional scaffolds, incorporating selected biopolymer coatings on basic Bioglass® derived foams has been developed. The polymer coatings were investigated as carrier of vancomycin which is a suitable drug to impart antibiotic function to the scaffolds. It has been proved that coating with PLGA (poly(lactic-co-glycolic acid)) with dispersed vancomycin-loaded microgels provides a rapid delivery of drug to give antibacterial effects at the wound site and a further sustained release to aid mid to long-term healing. Furthermore, the microgels also improved the bioactivity of the scaffolds by acting as nucleation sites for the formation of HA crystals in simulated body fluid.  相似文献   

20.
Composite scaffolds of poly(D,L-lactic acid) (PDLLA) with bioactive wollastonite were fabricated by the conventional solvent casting-particulate leaching method. The pore structures and morphology of the scaffolds were determined by scanning electron microscopy (SEM). The bioactivity of the composites was evaluated by soaking in a simulated body fluid (SBF), and the formation of the hydroxyapatite (HAp) layer was determined by SEM and energy-dispersive spectrometer. The results showed that the wollastonite/PDLLA composites were bioactive as it induced the formation of HAp on the surface of the composite scaffolds after soaking in SBF for seven days. In addition, pH and ion concentration changes of SBF solutions with composite scaffolds were examined. The results showed that the composites could release Ca and Si ions, which could neutralize the acidic degradation by-products of the PDLLA, and stabilize the pH of the SBF solutions between 6.7 and 7.2 within a three-week soaking period. Furthermore, the measurements of the water contact angles suggested that incorporation of wollastonite into PDLLA could improve the hydrophilicity of the composites and the enhancement was dependent on the wollastonite content. All these results suggest that incorporation of wollastonite into PDLLA might be a useful approach for the preparation of composite scaffolds for tissue repair and tissue-engineering applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号