首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
β‐fructofuranosidase (EC 3.2.1.26) from Aspergillus sp 27H isolated from soil was investigated for production of fructooligosaccharides (FOS) using whole cells. It possesses hydrolytic and transfructosylating activities that can be altered by modifying the reaction conditions. The optimal conditions for the transfructosylating activity occur in the pH range 5.5–6.0 and at 60 °C, while hydrolytic activity was highest at pH 4.0 and 55 °C. At low sucrose concentration (10 g dm?3) there was rapid conversion of sucrose to glucose and fructose and very low concentrations of FOS were obtained. However, at sucrose concentrations higher than 216 g dm?3 the concentrations of hydrolysis products were reduced. Under the following conditions: pH 5.5, temperature 40 °C, sucrose concentration 615 g dm?3 and enzyme concentration 20β‐fructofuranosidase units g?1 of sucrose, the FOS concentration reached a maximum value of 376 g dm?3 (234 g dm?3 1‐kestose and 142 g dm?3 nystose) and the proportion of FOS in the solids in the reaction mixture was 600–620 g kg?1 at 6 h. These results suggest that β‐fructofuranosidase from Aspergillus sp 27H could be an appropriate enzyme for the commercial production of FOS. Copyright © 2004 Society of Chemical Industry  相似文献   

2.
BACKGROUND: The increasing industrial demand for carotenoids has aroused interest in their bio‐production, and the need to reduce production costs has encouraged the use of low cost industrial substrates, such as agro‐industrial residues. Thus the objective of this research was the bio‐production of carotenoids by Sporidiobolus salmonicolor using agro‐industrial substrates (corn steep liquor and sugarcane molasses), pre‐treated with acids (sulphuric and phosphoric). RESULTS: Bio‐production was carried out in an orbital shaker using a 10% (v/v) inoculum, incubation at 25 °C, and agitation at 180 rpm for 120 h in a non‐illuminated environment. The carotenoids were recovered using liquid N2 combined with dimethylsulphoxide for cell rupture, and an acetone/methanol mixture (7:3 v/v) for extraction. CONCLUSION: The complete second‐order design allowed for optimisation of the carotenoid concentration obtained from industrial substrates pre‐treated with acids (sulphuric and phosphoric), obtaining a total carotenoid content of 541.5 µg L?1 using 10 g L?1 sugarcane molasses, 5 g L?1 corn steep liquor and 5 g L?1 yeast hydrolysate at 25 °C, with agitation at 180 rpm and an initial pH of 4.0. Copyright © 2008 Society of Chemical Industry  相似文献   

3.
BACKGROUND: The production of pullulan from synthetic medium by Aureobasidium pullulans P56 immobilized in Ca‐alginate beads was investigated using batch and repeated batch fermentation systems. RESULTS: The highest pullulan concentration (19.52 ± 0.37 g dm?3) was obtained with 2.0‐2.4 mm beads prepared from 2% sodium alginate solution. Pullulan production was mainly accomplished by immobilized fungal cells since leaked cells in the fermentation medium comprised 17.4% of the total fungal population at the end of fermentation. The pullulan proportion was 84.5% of the total polysaccharide in the fermentation medium. Response surface methodology was used to investigate the effects of three fermentation parameters (initial pH, agitation speed and incubation time) on the concentration of pullulan. Results of the statistical analysis showed that the fit of the model was good in all cases. The maximum pullulan concentration of 21.07 ± 0.48 g dm?3 was obtained at the optimum concentrations of process variables (pH 7.31, agitation speed 191.5 rpm, incubation time 101.2 h). The gel beads produced pullulan under the optimized conditions for six consecutive batch fermentations without marked activity loss and deformation. CONCLUSION: The results of this study suggest that the immobilization of A. pullulans cells in Ca‐alginate gel beads is suitable for batch and repeated batch production of pullulan. Copyright © 2007 Society of Chemical Industry  相似文献   

4.
The production of enriched fructose syrups and ethanol from a synthetic medium with high sucrose concentrations was studied in a batch process using Saccharomyces cerevisiae ATCC 36858. The results showed that the fructose yield was above 92% of theoretical values in synthetic media with sucrose concentrations between 180 g dm?3 and 726 g dm?3. Ethanol yield was about 82% in media with sucrose concentrations up to 451 g dm?3. A product containing 178 g dm?3 fructose, which represents 97% of the total sugar content, and 79 g dm?3 ethanol was obtained using a medium with 360 g dm?3 sucrose. The fructose fraction in the carbohydrates content in the produced syrups decreased with increases in the initial sucrose concentration. In a medium with initial sucrose concentration of 574 g dm?3, the fructose content in the produced broth was 59% of the total carbohydrates. Glycerol and fructo‐oligosaccharides were also produced in this process. The produced fructo‐oligosaccharides started to be consumed when the concentration of sucrose in the media was less than 30% of its initial value. Complete hydrolysis of these sugars was noticed in media with sucrose concentrations below 451 g dm?3. These findings will be useful in the production of ethanol and high fructose syrups using sucrose‐based raw materials with high concentrations of this carbohydrate. © 2001 Society of Chemical Industry  相似文献   

5.
The effects caused by alkaline treatment on the susceptibility of waste cardboard to enzymatic hydrolysis have been studied. Optimised conditions leading to extensive saccharification of both cellulose (870 g kg?1 conversion) and hemicelluloses (845 g kg?1 conversion) were identified. Samples treated under selected operational conditions were employed for producing D ‐lactic acid by simultaneous saccharification and fermentation (SSF) in media containing cellulases, β‐glucosidase and Lactobacillus coryniformis ssp torquens cells. SSF fed‐batch experiments led to D ‐lactic acid concentrations up to 23.4 g dm?3 at a product yield of 514 g lactic acid kg?1 of potential glucose and a volumetric productivity of 0.48 g dm?3 h?1. Copyright © 2004 Society of Chemical Industry  相似文献   

6.
In this article, graft copolymerization of N‐vinyl‐2‐pyrrolidone onto xanthan gum initiated by potassium peroxydiphosphate/Ag+ system in an aqueous medium has been studied under oxygen free nitrogen atmosphere. Grafting ratio, grafting efficiency, and add on increase on increasing the concentration of potassium peroxydiphosphate (2.0 × 10?3 to 12 × 10?3 mol dm?3), Ag+(0.4 × 10?3 to 2.8 × 10?3 mol dm?3), and hydrogen ion concentration from 2 × 10?3 to 14.0 × 10?3 mol dm?3. Maximum grafting has been obtained when xanthan gum and monomer concentration were 0.4 g dm?3 and 16 × 10?2 mol dm?3, respectively, at 35°C and 120 min. Water swelling capacity, swelling ratio, metal ion uptake, and metal retention capacity have also been studied, and it has been found that graft copolymer shows enhancement in these properties than pure xanthan gum. The graft copolymer has been characterized by FTIR and thermal analysis. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
The optimum conditions for grafting N‐vinyl‐2‐pyrrolidone onto dextran initiated by a peroxydiphosphate/thiourea redox system were determined through the variation of the concentrations of N‐vinyl‐2‐pyrrolidone, hydrogen ion, potassium peroxydiphosphate, thiourea, and dextran along with the time and temperature. The grafting ratio increased as the concentration of N‐vinyl‐2‐pyrrolidone increased and reached the maximum value at 24 × 10?2 mol/dm3. Similarly, when the concentration of hydrogen ion increased, the grafting parameters increased from 3 × 10?3 to 5 × 10?3 mol/dm3 and attained the maximum value at 5 × 10?3 mol/dm3. The grafting ratio, add‐on, and efficiency increased continuously with the concentration of peroxydiphosphate increasing from 0.8 × 10?2 to 2.4 × 10?2 mol/dm3. When the concentration of thiourea increased from 0.4 × 10?2 to 2.0 × 10?2 mol/dm3, the grafting ratio attained the maximum value at 1.2 × 10?2 mol/dm3. The grafting parameters decreased continuously as the concentration of dextran increased from 0.6 to 1.4 g/dm3. An attempt was made to study some physicochemical properties in terms of metal‐ion sorption, swelling, and flocculation. Dextran‐gN‐vinyl‐2‐pyrrolidone was characterized with infrared spectroscopy and thermogravimetric analysis. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
The direct treatment of whey wastewater at various sludge ages (10–75 days) and high biomass concentration (above 50 g mixed liquor suspended solid (MLSS) dm?3) in a submerged membrane bioreactor (sMBR) is described. The chemical oxygen demand (COD) of raw whey varied in the range of 60 and 90 g dm?3. After feeding the sMBR with raw whey, effluent COD reduced to about 20 g dm?3. The effluent was free of suspended solids and total coliform bacteria. Total phosphorus (TP) and orthophosphate (Ortho‐P) in the influent varied between 204 and 880 mg dm?3 and between 180 and 620 mg dm?3, and effluent TP and Ortho‐P reduced to 113 and 109 mg dm?3, respectively. The ammonium and nitrate concentrations in the influent were in the ranges of 3.4 and 120 mg dm?3 and 10 and 503 mg dm?3, respectively. The effluent ammonium concentration varied between 17.6 and 198 mg dm?3 and nitrate concentrations varied between 0.9 and 69 mg dm?3. Effluent turbidity varied between 23 and 111 FAU (Formazin Attenuation Unit). The results show that sMBR is an effective pre‐treatment system for high‐strength agro‐wastewaters because of its ability to reduce the pollution load. Copyright © 2004 Society of Chemical Industry  相似文献   

9.
In the refinery industry, the washing processes of middle‐distillates using caustic solutions generate phenol‐ and sulfide‐containing waste streams. The spent caustic liquors generated contain phenols at concentrations higher than 60 g dm?3(638.3 mmol dm?3). For sulfur compounds, the average sulfide concentration was 48 g dm?3(1500 mmol dm?3) in these streams. The goal of this study was to evaluate the specific impact of phenol and sulfide concentrations towards the phenol‐biodegradation activity of a phenol‐acclimated anaerobic granular sludge. An inhibition model was used to calculate the phenol and sulfide inhibitory concentrations that completely stopped the phenol‐biodegradation activity (IC100). A maximum phenol‐biodegradation activity of 83 µmol g?1 VSS h?1 was assessed and the IC100 values were 21.8 mmol dm?3 and 13.4 mmol dm?3 for phenol and sulfide respectively. The limitation of the phenol biodegradation flow by phenol inhibition seemed to be related to the more important sensitivity of phenol‐degrading bacteria. The up‐flow anaerobic sludge bed reactor operating in a non‐phenol‐dependent inhibition condition did not present any sensitivity to sulfide concentrations below 9.6 mmol dm?3. At this residual concentration, the pH and bisulfide ions' concentration might be responsible for the general collapsing of the reactor activity. Copyright © 2004 Society of Chemical Industry  相似文献   

10.
This paper investigates the transport of Th(IV) ions in nitric acid media through a supported liquid membrane (SLM) impregnated with di‐2‐ethylhexylphosphoric acid (HDEHP) in kerosene using an electric field. The transport was carried out in a three compartment cell fitted with microporous cellulose nitrate (SLM) and cation exchange membrane (Nafion). The effect of different parameters including nitric acid concentration in the feed solution, HDEHP concentration in the membrane, and HCl concentration were studied. The optimal conditions for Th(IV) transport were 0.1 mol dm?3 HDEHP, 10?3 mol dm?3 HNO3 in the feed solution, 1 mol dm?3 HCl in compartment 2 and 1 mol dm?3 HCl in compartment 3 at 25 °C. Under the optimal conditions of Th(IV) transport the recovery factor after 90 min was 0.25 without applying an electrostatic field, compared with 0.9 when the electric field was applied. The effect of electric current on the flux of Th(IV) through the membrane was also studied. The flux increased as the current density increased from 10 to 30 mA cm?2 to reach a maximum value at 30 mA cm?2 (8 × 10?9 g eq cm?2 s?1). The transport percentages of 0.3 g dm?3 Th(IV) in the presence of 0.1 g dm?3 Eu(III) and 1 g dm?3 U(VI) were 66, 84 and 15%, respectively. The determined selectivities of U(VI)–Th(IV) and Th(IV)–Eu(III) were 0.12 and 0.3, respectively, after 90 min. Therefore, the order of selectivity of this system is Eu(III) > Th(IV) > U(VI). © 2001 Society of Chemical Industry  相似文献   

11.
The effects of sucrose on cell growth and nisin production by Lactococcus lactis were investigated in batch and pH feed‐back controlled fed‐batch cultures. In batch cultures, nisin titer reached its maximum, 2658 IU cm?3, at the initial sucrose concentration of 30 g dm?3. With sucrose concentrations higher than 30 g dm?3, nisin production decreased while the biomass was not influenced significantly. By using the pH feed‐back controlled method, residual sucrose concentration could be controlled well in fed‐batch cultures and three conditions (sucrose maintained at 2, 16, 20 g dm?3, respectively) were evaluated. Maintaining a low sucrose concentration at 2 g dm?3 during feeding favored nisin biosynthesis, and the maximum nisin titer obtained was 4961 IU cm?3 compared with 3370 IU cm?3 (16 g sucrose dm?3)and 3498 IU cm?3 (20 g sucrose dm?3), respectively. Copyright © 2005 Society of Chemical Industry  相似文献   

12.
A biotransformation process using Mycobacterium sp was studied for androsta‐1, 4‐diene‐3,17‐dione (ADD) and androsta‐4‐ene‐3,17‐dione (AD) production from cholesterol. Cholesterol has a poor solubility in water (~1.8 mg dm?3 at 25 °C), which makes it difficult to use as the substrate for biotransformation. Lecithin is a mixture of phospholipids of phosphatidylcholine (PC) and phosphatidylethanolamine (PE), which behave like surfactants and can form planar bi‐layer structures in an aqueous medium. Therefore, a small amount of lecithin (<1 g dm?3) can be used to form stable colloids with cholesterol at a relatively high concentration (20 g dm?3) in water. In this work, an energy density of 1000 J cm?3 from sonication was provided to overcome the self‐association of cholesterol and to generate a stable lecithin–cholesterol suspension that could be used for enhanced biotransformation. The lecithin–cholesterol suspension was stable and could withstand typical autoclaving conditions (121 °C, 15 psig, 20 min). In contrast to conventional surfactants, such as Tween 80, that are commonly used to help solubilize cholesterol, lecithin did not change the surface tension of the aqueous solution nor cause any significant foaming problem. Lecithin was also biocompatible and showed no adverse effect on cell growth. Compared with the medium with Tween 80 as the cholesterol‐solubilizing agent, lecithin greatly improved the biotransformation process in regard to its final product yield (~59% w/w), productivity (0.127–0.346 g dm?3 day?1), ADD/AD ratio (6.7–8), as well as the long‐term process stability. Cells can be reused in repeated batch fermentations for up to seven consecutive batches, but then lose their bioactivity due to aging problems, possibly caused by product inhibition and nutrient depletion. © 2002 Society of Chemical Industry  相似文献   

13.
This study reports on the effects of internal fermenter and external in‐line agitation and fed‐batch mode of operation on citric acid production from Candida lipolytica using n‐paraffin as the carbon source. An optimum range of fermenter agitation speeds in the range 800–1000 rpm corresponding to Reynolds numbers of 50433–62947 (based on initial batch conditions) seemed to give the best balance between substrate utilization for biomass growth and citric acid production. Proof of concept evidence is presented that indicates that an external in‐line agitator could be used in place of high speed internal agitation to increase citric acid production. However, more work is required to optimize the external agitator concept. Application of multiple fed‐batch feedings can be used to extend the batch fermentation and increase final citric acid concentrations and product yield. Experiments were conducted implementing a three‐cycle fed‐batch process which increased overall citric acid yields to 0.8–1.0 g citric acid g?1 n‐paraffin, approximately 200% improvement from those found in the normal batch process. The three‐cycle fed‐batch mode of operation also increased the final citric acid concentration to 42 g dm?3 from about 6 g dm?3 for normal batch operation. Increased citric acid concentrations in three‐cycle fed‐batch mode was achieved at longer fermentation times. Copyright © 2004 Society of Chemical Industry  相似文献   

14.
The effects of chloride ions on chalcopyrite leaching by biologically‐produced ferric sulfate solution and on the iron‐oxidizing culture were determined. Chloride ions significantly increased chalcopyrite leaching by ferric sulfate at 67 °C and 87 °C, but slowed down the leaching at 50 °C. At 90 °C, chloride at 5 g dm?3 (0.25 g Cl? g?1 concentrate) increased the copper yield from 60 to 100% in approximately 2 weeks. Further increase in Cl? concentration did not affect the leaching. Addition of chloride increased both leaching yields and iron precipitation, which shows that the passivation was not due to iron precipitation. A decreased Ag‐potential of 60 mV against an Ag/AgCl reference electrode in the presence of Cl? indicates the accumulation of partially oxidized forms of dissolved sulfur compounds such as thiosulfate and polythionate instead of elemental sulfur and, thus, a decrease in sulfur passivation. A chloride concentration of 5 g dm?3 did not affect the iron oxidation rate of the iron‐oxidizing culture dominated by Leptospirillum ferriphilum. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
Ammonium fumarate production from glucose‐based media by Rhizopus arrhizus NRRL 1526 with mycelial growth controlled by phosphorus limitation exhibited mixed‐growth‐associated product formation kinetics, with growth‐associated production related to secondary mycelial growth only. The contribution of the primary mycelial growth phase was minimised by resorting to prolonged batch production using free mycelia under intermittent glucose feeding or repeated batch production using immobilised mycelia. The metabolic activity of free or immobilised mycelia was limited by fumarate accumulation or by oxygen diffusion phenomena, respectively. For batch cultures in a 15 dm3 stirred bioreactor the peripheral impeller speed (vI) was increased from 1.88 to 3.3 m s?1, and the fumarate yield coefficient on glucose increased from 0.25 ± 0.01 to 0.42 ± 0.02 g g?1, while the malate yield coefficient on fumarate (YM/F) reduced from 0.46 ± 0.01 to 0.14 ± 0.01 g g?1. With a net increase in the fumarate‐to‐malate ratio from 2 to 6.5, a vI value of 3.3 m s?1 gave the best fermentation performance and provided a basis for further scale‐up studies. © 2002 Society of Chemical Industry  相似文献   

16.
Aluminum hydroxide‐poly[acrylamide‐co‐(acrylic acid)], AHAMAA, was synthesized with a redox initiator by solution polymerization in which the effects of reactant contents were optimized. The effects of pH, temperature, and initial dye concentration on Congo red reduction were investigated. A mixture of Congo red and direct blue 71, and the composite textile dye wastewater were investigated. Adsorptions of both dyes were more effective in the nonbuffered solution than those in the buffered solution, and Congo red adsorbed more than direct blue 71 at all pHs. The adsorption of Congo red increased with increasing temperature and its initial concentration. Both dyes obeyed the Freundlich adsorption isotherm. The maximum adsorptions in 100 mg dm?3 solution were 109 ± 0.5 mg g?1 and 62 ± 6.6 mg g?1 for Congo red and direct blue 71, respectively. At 150 mg dm?3 of the mixed Congo red and direct blue 71, the adsorption was 142 ± 2 mg g?1 by 643 ± 3 mg dm?3 AHAMAA. The 40 mg g?1 dyes of the textile effluent wastewater were adsorbed by 500 mg dm?3 AHAMAA. AHAMAA could decrease turbidity of the composite wastewater containing a mixture of reactive and direct dyes from 405 to 23 NTU. POLYM. ENG. SCI., 50:1535–1546, 2010. © 2010 Society of Plastics Engineers  相似文献   

17.
The biomass growth, lactic acid production and lactose utilisation kinetics of lactic acid production from whey by Lactobacillus casei was studied. Batch fermentation experiments were performed at controlled pH and temperature with six different initial whey lactose concentrations (9‐77 g dm?3) in a 3 dm3 working volume bioreactor. Biomass growth was well described by the logistic equation with a product inhibition term. In addition, biomass and product inhibition effects were defined with corresponding power terms, which enabled adjustment of the model for low‐ and high‐substrate conditions. The Luedeking‐Piret equation defined the product formation kinetics. Substrate consumption was explained by production rate and maintenance requirements. A maximum productivity of 2.5 g dm?3 h?1 was attained with an initial lactose concentration of 35.5 g dm?3. Copyright © 2006 Society of Chemical Industry  相似文献   

18.
The production of lactic acid from whey by Lactobacillus casei NRRL B‐441 immobilized in chitosan‐stabilized Ca‐alginate beads was investigated. Higher lactic acid production and lower cell leakage were observed with alginate–chitosan beads compared with Ca‐alginate beads. The highest lactic acid concentration (131.2 g dm?3) was obtained with cells entrapped in 1.3–1.7 mm alginate–chitosan beads prepared from 2% (w/v) Na‐alginate. The gel beads produced lactic acid for five consecutive batch fermentations without marked activity loss and deformation. Response surface methodology was used to investigate the effects of three fermentation parameters (initial sugar, yeast extract and calcium carbonate concentrations) on the concentration of lactic acid. Results of the statistical analysis showed that the fit of the model was good in all cases. Initial sugar, yeast extract and calcium carbonate concentrations had a strong linear effect on lactic acid production. The maximum lactic acid concentration of 136.3 g dm?3 was obtained at the optimum concentrations of process variables (initial sugar 147.35 g dm?3, yeast extract 28.81 g dm?3, CaCO3 97.55 g dm?3). These values were obtained by fitting of the experimental data to the model equation. The response surface methodology was found to be useful in optimizing and determining the interactions among process variables in lactic acid production using alginate–chitosan‐immobilized cells. Copyright © 2005 Society of Chemical Industry  相似文献   

19.
A pilot‐scale anaerobic/aerobic ultrafiltration system was tested to treat high‐strength tomato‐processing wastewater, to achieve stringent dry‐ditch discharge criteria of soluble biochemical oxygen demand (SBOD) <10 mg dm?3, total suspended solids <10 mg dm?3, ammonia nitrogen <3 mg dm?3 and soluble phosphorus <0.5 mg dm?3. The anaerobic/aerobic system achieved 99.4% SBOD removal, 91.9% NH3 N removal and 100% phosphorus removal at an overall hydraulic retention time of 1.5 days and solids retention time of 5 days during the tomato canning season. Respirometric studies confirmed that the pretreatment of tomato‐processing wastewater in the anaerobic reactor increased the readily biodegradable fraction, improved kinetics, and eliminated nutrient deficiency problem. Copyright © 2006 Society of Chemical Industry  相似文献   

20.
The upflow anaerobic sludge blanket (UASB) has been used successfully to treat a variety of industrial wastewaters. It offers a high degree of organics removal, low sludge production and low energy consumption, along with energy production in the form of biogas. However, two major drawbacks are its long start‐up period and deficiency of active biogranules for proper functioning of the process. In this study, the influence of a coagulant polymer on start‐up, sludge granulation and the associated reactor performance was evaluated in four laboratory‐scale UASB reactors. A control reactor (R1) was operated without added polymer, while the other three reactors, designated R2, R3 and R4, were operated with polymer concentrations of 5 mg dm?3, 10 mg dm?3 and 20 mg dm?3, respectively. Adding the polymer at a concentration of 20 mg dm?3 markedly reduced the start‐up time. The time required to reach stable treatment at an organic loading rate (OLR) of 4.8 g COD dm?3 d?1 was reduced by more than 36% (R4) as compared with both R1 and R3, and by 46% as compared with R2. R4 was able to handle an OLR of 16 g COD dm?3 d?1 after 93 days of operation, while R1, R2 and R3 achieved the same loading rate only after 116, 116 and 109 days respectively. Compared with the control reactor, the start‐up time of R4 was shortened by about 20% at this OLR. Granule characterization indicated that the granules developed in R4 with 20 mg dm?3 polymer exhibited the best settleability and methanogenic activity at all OLRs. The organic loading capacities of the reactors were also increased by the addition of polymer. The maximum organic loading of the control reactor (R1) without added polymer was 19.2 g COD dm?3 d?1, while the three polymer‐assisted reactors attained a marked increase in organic loading of 25.6 g COD dm?3 d?1. Adding the cationic polymer could result in shortening of start‐up time and enhancement of granulation, which may in turn lead to improvement in the efficiency of organics removal and loading capacity of the UASB system. Copyright © 2004 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号