首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
借助热压缩实验研究了变形温度、应变速率和变形量对铸态AZ31B镁合金热变形行为及组织演变的影响规律。结果表明:(1)峰值应力随着应变速率的降低和温度的升高而减小,主要的形核机制为晶界弓出形核、亚晶旋转形核、孪生诱发形核,以及连续再结晶;(2)低于400℃变形时,温度的升高有利于再结晶的发生及晶粒细化;高于400℃时,晶粒尺寸开始迅速增大;(3)在小于等于400℃变形时,低速率0.1 s~(-1)更有利于再结晶晶粒细化;当变形温度高于400℃时,中速率1 s~(-1)更有利于再结晶晶粒细化;(4)高温低速率变形时,变形量主要影响晶粒尺寸,而高温高速率变形时,变形量主要影响动态再结晶程度。  相似文献   

2.
在变形温度280~400℃、应变速率0.001~1 s~(-1)、最大变形量50%的条件下,采用等温压缩实验研究了铸态镁合金AZ91D塑性变形和微观组织演变行为。结果表明:AZ91D热压缩变形中发生了不同程度的动态再结晶,提高变形温度和降低变形速率有利于促进动态再结晶晶粒的形核和长大,动态再结晶体积分数随真应变增大呈现慢-快-慢的增长规律。在对实验数据回归分析的基础上,建立了AZ91D动态再结晶临界条件、动力学方程和晶粒尺寸预测模型,并通过定量金相实验结果验证了该模型的合理性。  相似文献   

3.
在单向压缩热模拟试验机上对AZ31-1Sm合金在变形温度为300~450℃、应变速率为0.01~1 s-1条件下的热变形行为和微观组织进行研究。结果表明:AZ31-1Sm镁合金在热压缩变形时,流变应力随着应变速率的增大和变形温度的降低而增大;该合金的热压缩流变应力行为可用双曲正弦形式的本构方程来描述,在本实验条件下,AZ31-1Sm镁合金热热变形激活能Q为160.8 k J/mol。AZ31-1Sm易发生动态再结晶,在高变形温度和低应变速率条件下动态再结晶趋势明显,动态再结晶晶粒尺寸随着变形温度的增加和应变速率的降低而增大。  相似文献   

4.
在单向压缩热模拟试验机上对AZ31-1Sm合金在变形温度为300~450℃、应变速率为0.01~1 s-1条件下的热变形行为和微观组织进行研究。结果表明:AZ31-1Sm镁合金在热压缩变形时,流变应力随着应变速率的增大和变形温度的降低而增大;该合金的热压缩流变应力行为可用双曲正弦形式的本构方程来描述,在本实验条件下,AZ31-1Sm镁合金热热变形激活能Q为160.8 k J/mol。AZ31-1Sm易发生动态再结晶,在高变形温度和低应变速率条件下动态再结晶趋势明显,动态再结晶晶粒尺寸随着变形温度的增加和应变速率的降低而增大。  相似文献   

5.
通过AZ31镁合金热压缩试验,采用电子背散射衍射(EBSD)技术,对不同变形条件(不同温度、应变速率和变形程度)下镁合金热变形过程中的动态再结晶行为、晶粒取向和织构的产生等现象进行研究。结果表明,变形温度越高,再结晶程度表现得越充分,晶粒组织也越均匀,而变形程度越大或应变速率越小,再结晶程度则越大。在镁合金热变形过程中,变形温度是决定其动态再结晶机制的最大影响因素。300℃时,AZ31镁合金再结晶晶粒在原始晶界和亚晶界处形核,再结晶行为主要由亚晶界的转动形成,表现出典型的连续动态再结晶(CDRX)特征。400℃时,局部剪切变形时再结晶晶粒取向发生偏转,表现出典型的旋转动态再结晶(RDRX)特征。热压缩过程中产生■拉伸孪生,晶粒重新旋转基面取向形成基面垂直于压缩方向的纤维织构。  相似文献   

6.
对Ti-25V-15Cr-0.2Si阻燃钛合金在温度为950~1100℃,应变速率为0.001~1 s~(-1)条件下进行热压缩试验,研究了该合金在β相区变形时的动态再结晶行为。结果表明,该合金的热变形机制主要是由动态再结晶支配的,而动态再结晶新晶粒主要是通过弓弯形核机制来形成的。当应变速率降低和变形温度升高时动态再结晶易于发生;当应变速率为0.01~0.1 s~(-1),变形温度为950~1050℃时,动态再结晶使晶粒细化;当变形温度高于1100℃,应变速率低于0.001 s~(-1)时,动态再结晶晶粒粗化。为了确定在不同变形条件下的动态再结晶体积分数和动态再结晶晶粒尺寸,分别建立了该合金动态再结晶动力学和动态再结晶晶粒尺寸预测模型。  相似文献   

7.
铸态AZ61镁合金热压缩变形组织变化   总被引:2,自引:1,他引:1  
利用Gleeble-1500对铸态AZ61镁合金在变形温度200~500℃,应变速率0.001~1s-1的条件下进行压缩变形;利用显微结构分析和硬度测试等研究不同变形条件下AZ61镁合金的组织和性能,引用Z值(Zener-Hollomon系数)研究温度和应变速率对AZ61镁合金组织的影响,建立再结晶晶粒尺寸与Z值之间的关系。结果表明:铸态AZ61镁合金在热变形时表现出动态再结晶特征,随温度上升,再结晶容易发生且峰值应力降低,再结晶晶粒尺寸随温度升高而增大;随应变速率上升,峰值应力增大且峰值应力对应的应变量增大,再结晶晶粒尺寸减小;硬度大小的变化也与动态再结晶密切相关。  相似文献   

8.
《热处理》2017,(6)
对尺寸为φ10 mm×15 mm的AZ31B镁合金试样,采用gleeble-1500热模拟试验机分别以0.001 s~(-1)、0.01 s~(-1)和0.1s~(-1)的应变速率进行了热压缩试验,压缩变形率分别为0.2、0.4和0.7。研究了压缩温度、应变速率和压缩变形量对AZ31B镁合金在热压缩变形过程中流变应力的影响,根据研究结果建立了AZ31B镁合金热压缩过程的本构方程。该方程能描述AZ31B镁合金的高温力学性能,可为该镁合金产品的开发和生产提供工程计算依据。  相似文献   

9.
通过热压缩实验,研究挤压态AZ80镁合金在变形温度为250-450℃,应变速率为0.001-10 s-1条件下的热变形行为。采用经过温升修正的流变应力计算该合金的Zener-Hollomon参数(Z参数)。结果表明,挤压态AZ80镁合金适宜的变形条件为应变速率0.1 s-1、变形温度350-400℃。另外,讨论了显微组织演化与Z参数之间的关系。在高温及低应变速率(低Z参数)时,合金发生了完全再结晶并产生了大的再结晶晶粒。综合考虑加工图和显微组织,变形温度400℃、应变速率0.1 s-1是合金适宜的热变形条件。  相似文献   

10.
《热处理》2017,(5)
使用Gleeble-1500型热模拟试验机对经420℃×12 h固溶处理的AZ91镁合金进行了单向热模拟压缩试验,建立并分析了变形温度为200~425℃、应变速率为0.01~10 s~(-1)条件下的热加工图。结果表明,AZ91镁合金适合于在低应变速率、高变形温度条件下进行加工。变形温度的升高和应变速率的降低有利于动态再结晶的形核。适合于AZ91镁合金的热加工工艺参数为温度573~675K,应变速率0.01~0.1 s~(-1),可为制定AZ91镁合金的热加工工艺提供理论依据。  相似文献   

11.
利用Gleeble-1500D热模拟试验机对AZ31镁合金在温度为300℃、350℃、400℃,应变速率为0.001 s-1~1.0s-1,每道次的变形量分别是:30%,10%,10%,总变形量为43%条件下,进行了高温多道次压缩试验。测量了不同应变速率下的应力-应变曲线。根据热模拟试验数据,确定AZ31镁合金高温变形本构关系模型,该本构关系模型的相对计算误差小于8%。试验确定的AZ31镁合金本构关系模型的适用温度范围为300℃~400℃,应变速率范围为0.001 s-1~1.0 s-1。得出动态再结晶激活能为207.61 kJ/mol。  相似文献   

12.
采用Gleeble 3800数控式热-力物理模拟试验机对AZ80和AZ80-Ca-Ce两种镁合金开展了热压缩研究,在压缩变形温度300℃~500℃、应变速率0.000 5 s~(-1)~0.5 s~(-1)范围内研究热变形过程中两种镁合金流变行为及微观组织演变规律,建立了热加工图。结果表明:Ca和Ce联合微合金化使AZ80镁合金的热变形激活能从142 kJ/mol提高到172 kJ/mol。通过建立两种镁合金热加工图及组织观察可知,Ca、Ce联合微合金化使AZ80镁合金的高温高应变速率变形区由失稳区转变为安全区,确定AZ80-Ca-Ce镁合金最佳的热塑性加工区间为应变速率0.01 s~(-1)~0.000 3 s~(-1)、温度340℃~425℃。通过对不同热加工条件下的微观组织变形和演变机制分析表明,在变形失稳区,两种镁合金的软化机制均以动态回复为主;在变形安全区,Ca和Ce联合微合金化使AZ80镁合金的组织演变和软化机制向动态再结晶转变。  相似文献   

13.
采用Gleeble1500D热模拟试验机对AZ31镁合金在变形温度200~500℃、应变速率0.005~5s~(-1)下进行了压缩试验,研究了其热变形行为,得出相应的应力-应变关系。根据合金动态模型,通过应力-应变关系计算的相应参数构建了AZ31镁合金热加工图。通过能量耗散因子的分析和各加工区的典型组织的观察,得到了适宜的工艺参数范围。结果表明:AZ31镁合金适宜的热加工工艺参数范围为:变形温度350~450℃,应变速率0.005~0.1 s~(-1)和1.6~5 s~(-1),在此范围加工的镁合金可以避免开裂、过烧等缺陷。  相似文献   

14.
采用Gleeble-1500热模拟机对AZ91镁合金进行了高温压缩变形实验,分析了该合金在变形温度为250~400℃、应变速率为0.001~1 s-1条件下流变应力及组织演变规律。结果表明:合金的热变形过程均表现出明显的动态再结晶特征,其流变应力及组织均受变形温度和应变速率的因素影响显著;流变应力随变形温度的升高、应变速率的减小而降低,而再结晶晶粒尺寸则随之增大,且再结晶程度进行越为充分,其再结晶晶粒大小基本随Z参数自然对数值的增大而呈指数递减规律。  相似文献   

15.
用热模拟机对AZ61镁合金在150-400℃、0.01~10s^-1条件下进行压缩变形;利用现代冶金分析、硬度测试及扫描电镜等研究不同变形条件下AZ61镁合金的组织与性能。结果表明:AZ61镁合金压缩变形时表现出动态再结晶特征,随温度上升,再结晶容易发生且应力峰降低,再结晶晶粒变大;随应变速率上升,发生再结晶转变的临界应变增大且再结晶晶粒尺寸减小;同时在实验温度范围内,合金塑性随变形温度上升有所改善。  相似文献   

16.
采用Thermecmastor-Z热模拟试验机在变形温度为200~520℃、应变速率为2~60 s-1条件下对AZ31B镁合金厚板进行热压缩变形试验,压缩变形量为60%。结合变形后的微观组织以及热压缩真应力-真应变曲线,分析应变速率和变形温度等工艺参数对其微观组织演变的影响。结果表明:当变形温度高于320℃时,AZ31B镁合金的真应力-真应变曲线呈现典型的动态再结晶特性。当应变速率一定时,流变应力随温度升高而降低;当变形温度一定时,流变应力在高温低应变速率(低于15 s-1)下随应变速率增大而增大。变形后的微观组织显示,压缩变形过程中发生了明显的动态再结晶,动态再结晶体积分数随应变速率的增加而增大。另外,变形组织的均匀性受变形温度的影响十分显著。在热压缩实验的基础上,在温度为300~330℃时对板材进行单道次大压下量的热轧,获得的板材具有均匀细小的晶粒及优异的力学性能。  相似文献   

17.
采用热模拟实验方法获得了AZ31镁合金热变形真实应力-真实应变曲线,分析了变形工艺参数对AZ31镁合金热变形动态再结晶晶粒尺寸的影响规律。随着塑性变形应变速率的增大,动态再结晶晶粒尺寸减小。随着塑性变形温度的升高,晶粒尺寸增大。基于Yada模型,建立了AZ31镁合金热变形动态再结晶晶粒尺寸与变形工艺参数关系模型,以及动态再结晶临界应变与变形温度关系模型。晶粒尺寸预测模型计算值与实验值相吻合,最大相对误差为8.5%。临界应变模型计算值与实验值相吻合,最大相对误差为8.1%。建立的动态再结晶晶粒尺寸预测模型和临界应变预测模型的适用条件为变形温度250~400℃,应变速率0.01~1.0 s-1。  相似文献   

18.
本文采用Gleeble-1500B热模拟试验机研究了铸造Mg-2.5Nd-1.0Zn-0.5Zr稀土镁合金在变形温度为200~400℃、应变速率为0.001~0.1 s~(-1),变形程度为30%条件下的高温压缩变形行为,分析了实验合金在高温变形过程中应力与应变速率和变形温度之间的关系。结果表明,Mg-2.5Nd-1.0Zn-0.5Zr镁合金热变形时,变形温度和应变速率是影响合金热变形性能的重要因素。应变速率越低,温度越高时更容易发生再结晶。提高变形温度和变形量、降低应变速率,均使动态再结晶程度增加,晶粒尺寸加大。  相似文献   

19.
在温度为220~380℃和应变速率为0.001~1s~(-1)的条件下进行等温热压缩,研究铸态AZ91D镁合金的变形行为和动态再结晶行为。讨论变形温度和应变速率对动态再结晶行为的影响。结果表明,动态再结晶晶粒的形核和长大极易在高温和低应变速率的条件下发生。为预测动态再结晶的演变过程,在真实应力—应变曲线数据的基础上,提出AZ91D镁合金的动态再结晶动力学模型。该模型揭示动态再结晶的体积分数随着真实应变的增加而增加,其增长趋势呈典型的"S"曲线。通过对比发现由动力学模型所预测的结果和微观组织观测的数据具有很好的一致性,验证了所建立的AZ91D镁合金动态再结晶动力学模型的准确性。  相似文献   

20.
对铸态AZ31B镁合金在温度280℃~440℃、应变速率0.001s-1~0.1s-1条件下进行热压缩实验,分析变形程度、应变速率和加热温度对其微观组织变化的影响,探讨合金的热压变形机制。实验结果表明,该合金热变形时发生了动态再结晶。变形温度越高、变形速率越小和变形量越大时,动态再结晶进行的越充分;变形温度越低、变形速率越大和变形量越大时,动态再结晶晶粒越细小。该合金的热变形机制是滑移孪晶联合机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号