首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
For the production of highly concentrated bioethanol by pervaporation using an ethanol‐permselective silicalite membrane, pervaporation performance was investigated using a silicalite membrane entirely covered with a silicone rubber sheet to prevent direct contact with acidic compounds. By using a resistance model for membrane permeation, the separation factor of the covered silicalite membrane towards ethanol can be estimated from the individual pervaporation performances of the silicalite membrane and the silicone rubber sheet. No decrease in the ethanol concentration through the silicone rubber sheet‐covered membrane was caused when ethanol solutions containing succinic acid were supplied. By directly passing the permeate‐enriched ethanol vapor mixed with water vapor through a dehydration column packed with a molecular sieve of pore size 0.3 nm, highly concentrated bioethanol up to 97% (w/w), greater than the azeotropic point in the ethanol/water binary systems, can be obtained from 9% (w/w) fermentation broth. Copyright © 2004 Society of Chemical Industry  相似文献   

2.
In order to produce highly concentrated bioethanol by pervaporation using an ethanol‐permselective silicalite membrane, techniques to suppress adsorption of succinic acid, which is a chief by‐product of ethanol fermentation and causes the deterioration in pervaporation performance, onto the silicalite crystals was investigated. The amount adsorbed increased as the pH of the aqueous succinic acid solution decreased. The pervaporation performance also decreased with decreasing pH when the ternary mixtures of ethanol/water/succinic acid were separated. Using silicalite membranes individually coated with two types of silicone rubber, pervaporation performance was significantly improved in the pH range of 5 to 7, when compared with that of non‐coated silicalite membranes in ternary mixtures of ethanol/water/succinic acid. Moreover, when using a silicalite membrane double‐coated with the two types of silicone rubber, pervaporation performance was stabilized at lower pH values. In the separation of bioethanol by pervaporation using the double‐coated silicalite membrane, removal of accumulated substances having an ultraviolet absorption maximum at approximately 260 nm from the fermentation broth proved to be vital for efficient pervaporation. Copyright © 2005 Society of Chemical Industry  相似文献   

3.
Since pervaporation performance of ethanol‐permselective silicalite membrane, which is an aluminum‐free hydrophobic zeolite, in the separation of fermentation broths by yeast are negatively affected by succinic acid, the potential of pervaporation using silicone rubber‐coated silicalite membranes of ethanol fermentation broths, not containing succinic acid, by Zymomonas mobilis was investigated for the reliable production of concentrated bioethanol. In the separation of fermentation broths, the pervaporation performance was influenced by nutrients used for the preparation of fermentation broths. In the separation of a broth prepared with yeast extract, pervaporation performance was greatly compromised by accumulation of a substance(s) having an ultraviolet absorption maximum at approximately 260 nm not only in total flux, but also in permeate ethanol concentration compared to the separation of binary ethanol/water mixtures. When supplying a prepared broth with corn steep liquor without the accumulation of a substance(s) having an ultraviolet absorption maximum at approximately 260 nm, the permeate ethanol concentration did not decrease. Treating the prepared broth with activated carbon was effective in restraining the decrease in total flux. Pervaporation performance is also deteriorated by the adsorption of lactic acid contained in corn steep liquor onto the silicalite crystals. In the separation of ternary mixtures of ethanol/water/lactic acid, accomplished by adjusting the ternary mixtures to pH > 5, more than 90% of the permeation flux in the separation of binary ethanol/water mixtures was obtained, and the permeate ethanol concentration was comparable to that obtained in the separation of binary mixtures. For stably performing pervaporation, it is important to prepare ethanol fermentation broths by Zymomonas mobilis in which lactic acid concentration is as low as possible. Copyright © 2007 Society of Chemical Industry  相似文献   

4.
BACKGROUND: Pervaporation employing ethanol‐permselective silicalite membranes as an alternative to distillation is a promising approach for refining low‐concentration bioethanol solutions. However, to make the separation process practicable, it is extremely important to avoid the problems caused by the adsorption of succinate on the membrane during the separation process. In this work, the pervaporation of an ethanol fermentation broth without succinate was investigated, as well as the influence of several fermentation broth nutrient components. RESULTS: Candida krusei IA‐1 produces an extremely low level of succinate. The decrease in permeate ethanol concentration through a silicone rubber‐coated silicalite membrane during the separation of low‐succinate C. krusei IA‐1 fermentation broth was significantly improved when compared with that obtained using Saccharomyces cerevisiae broth. By treating the fermentation broth with activated carbon, bioethanol was concentrated as efficiently as with binary mixtures of ethanol/water. The total flux was improved upto 56% of that obtained from the separation of binary mixtures, compared with 43% before the addition of activated carbon. Nutrients such as peptone, yeast extract and corn steep liquor had a negative effect on pervaporation, but this response was distinct from that caused by succinate. CONCLUSION: For consistent separation of bioethanol from C. krusei IA‐1 fermentation broth by pervaporation, it is useful to treat the low nutrient broth with activated carbon. To further improve pervaporation performance, it will be necessary to suppress the accumulation of glycerol. Copyright © 2009 Society of Chemical Industry  相似文献   

5.
BACKGROUND: To use butanol as a liquid fuel and feedstock, it is necessary to establish processes for refining low‐concentration butanol solutions. Pervaporation (PV) employing hydrophobic silicalite membranes for selective recovery of butanol is a promising approach. In this study, the adsorption behavior of components present in clostridia fermentation broths on membrane material (silicalite powder) was investigated. The potential of PV using silicone rubber‐coated silicalite membranes for the selective separation of butanol from model acetone–butanol–ethanol (ABE) solutions was investigated. RESULTS: The equilibrium adsorbed amounts of ABE per gram of silicalite from aqueous solutions of binary mixtures at 30 °C increased as follows: ethanol (95 mg) < acetone (100 mg) < n‐butanol (120 mg). The amount of butanol adsorbed is decreased by the adsorption of acetone and butyric acid. In the separation of ternary butanol/water/acetone mixtures, the enrichment factor for acetone decreased, compared with that in binary acetone/water mixtures. In the separation of a model acetone–butanol–ethanol (ABE) fermentation broth containing butyric acid by PV using a silicone rubber‐coated silicalite membrane, the permeate butanol concentration was comparable with that obtained in the separation of a model ABE broth without butyric acid. The total flux decreased with decreasing feed solution pH. CONCLUSION: A silicone rubber‐coated silicalite membrane exhibited highly selective PV performance in the separation of a model ABE solution. It is very important to demonstrate the effectiveness of PV in the separation of actual clostridia fermentation broths, and to identify the factors affecting PV performance. Copyright © 2011 Society of Chemical Industry  相似文献   

6.
硅橡胶膜生物反应器在苹果原汁发酵过程中的膜分离性能   总被引:1,自引:0,他引:1  
利用硅橡胶膜生物反应器进行了苹果原汁发酵-渗透汽化分离实验,研究了苹果发酵液中的主要风味成分及其渗透汽化分离性能。发酵液中的主要芳香成分与传统苹果酒接近,但酯类物质的含量较低。硅橡胶膜对发酵液中的挥发性轻组分表现出良好的选择透过性,高级醇、酯类和醛类的分离率分别达到90%、76%和67%;而乳酸乙酯、β-苯乙醇和乙酸被不同程度地截留。非挥发性有机酸被截留在膜上游发酵液中。草酸、乙酸、柠檬酸和琥珀酸得到不同程度地浓缩;苹果酸、酒石酸和乳酸在分离过程中可能被微生物细胞所消耗,其含量有所降低。硅橡胶复合膜在选择性地分离挥发性轻组分的同时有效地保护了发酵液中的有机酸等非挥发性营养成分,研究结果进一步证明了采用硅橡胶膜生物反应器同时生产苹果白兰地和果汁发酵饮料的可行性。  相似文献   

7.
硅橡胶膜生物反应器中乙醇发酵与渗透汽化的耦合   总被引:3,自引:0,他引:3  
用硅橡胶膜生物反应器(SMBR)实验研究连续发酵-渗透汽化的耦合性能。发酵微生物采用酿酒干酵母,所用碳源为工业级葡萄糖。发酵过程由于产物抑制作用,在乙醇质量浓度达到73 g/L时趋于停滞,而耦合渗透汽化膜后,发酵罐内的乙醇质量浓度降低并维持在40 g/L,使发酵可以连续稳定地进行。在SMBR运行达到稳态后,乙醇的体积产率为4.02 g/(L.h)。发酵液中乙醇质量浓度维持在20~63 g/L,聚二甲基硅氧烷(PDMS)膜的总渗透通量为1 220~800 g/(m2.h),分离因子为5~9.2。与传统发酵和分离相同进料质量分数的乙醇溶液相比,乙醇发酵和渗透汽化在硅橡胶膜生物反应器中能相互耦合并得到强化。与较小规模耦合系统(发酵体积1 L和2 L)比较,性能稳定良好。  相似文献   

8.
《分离科学与技术》2012,47(12):1709-1714
Lignocellulosic biomass has potential as an alternative to corn as starting material for the production of ethanol for the development of non-fossil fuel energy sources. In this case, low concentration bioethanol is gained by yeast fermentation and it has to be efficiently recovered and concentrated. For this purpose pervaporation separation of dilute alcohol-aqueous solutions was carried out using a poly(octhylmethyl siloxane) [POMS] membrane. The effect of different process parameters (feed composition, feed temperature, feed flow rate, permeate pressure) on pervaporation performance were investigated and discussed in terms of the separation factor and the total flux. The membrane studied was ethanol to water selective at ethanol feed concentrations lower than 2.5% w/w, while the highest permeability was achieved at feed temperature of 95°C.  相似文献   

9.
The pervaporation behavior of fermentation broth was investigated experimentally and compared with those started with ethanol mixtures. Ethanol was produced by Saccharomyces cerevisiae utilizing technical grade glucose and recovered by pervaporation using a composite polydimethylsiloxane (PDMS) membrane prepared in our laboratory. Ethanol concentration in fermentation broth decreased to a relatively low level when pervaporation was coupled with fermentation. The more active cells appeared in the fermentation broth, the better the membrane performance was.  相似文献   

10.
Separation of acetic acid/water mixtures by pervaporation was attempted by silicone rubbercoated polyetherimide membranes. In particular, the effect of the pore size of the polyetherimide membrane and the condition of silicone rubber coating on the performance of the composite membrane was investigated. It was found that the composite membrane could become either water selective or acetic acid selective, depending on the pore size of the support membrane and the condition of the silicone rubber coating. Thus, the overall performance of the composite membrane can be governed, either by the top coated layer or by the bottom support layer.  相似文献   

11.
丙酮、乙醇对丁醇渗透汽化性能的影响   总被引:1,自引:1,他引:1       下载免费PDF全文
周浩力  苏仪  伊守亮  万印华 《化工学报》2010,61(5):1143-1149
考察了全硅沸石silicalite-1对丁醇-水、丙酮-水、乙醇-水、丙酮-丁醇-水、乙醇-丁醇-水5种体系中各溶剂的吸附作用。采用自制的silicalite-1/硅橡胶杂化渗透汽化透醇膜,研究了温度对丙酮、丁醇、乙醇分离性能的影响以及不同分离温度下丙酮、乙醇的浓度对丁醇、水渗透汽化性能的影响,结果表明丙酮和乙醇的存在会促进丁醇的透膜性。  相似文献   

12.
《分离科学与技术》2012,47(10):893-904
Abstract

Ethanol-water solutions may be concentrated by pervaporation through silicone rubber and regenerated cellulose film. Using silicone, separation factors (SF) decrease as the ethanol concentration in the feed solution increases (SF = 6.5 using 12.9 w/w% ethanol and 1.4 using 83.2% ethanol at 30°C). The temperature effect on separation factors is negligible, but is appreciable on permeation rates.

Ethanol permeation rates in the dialysis mode are not linear with ethanol chemical potentials in solution; silicone swelling coefficients also increase noticeably with alcohol concentration in aqueous solutions, indicating that preferential ethanol sorption occurs and is responsible for the separation.  相似文献   

13.
The structure and the adsorption–desorption properties of zeolite silicalite-I by different treatments after synthesis were studied. The pervaporation properties of the alcohol–water mixture through silicone rubber filled with zeolite silicalite-I by different treatments were also investigated. Treating silicalite-I by acid or/and under steam was found to eliminate the metallic impurities in the zeolite and to perfect the crystalline structure of the zeolite. After treatment, silicalite-I is more selective to alcohol and the desorption of the alcohol from the zeolite is also easier. The silicone rubber membrane filled with treated silicalite-I shows a high performance for alcohol extraction from the dilute aqueous solution by pervaporation. The separation factor of the poly(dimethyl siloxane) (PDMS) membrane filled with silicalite-I treated successively by acid and steam is about 30 when the ethanol content in the feed is 5 wt % at 50°C. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 629–636, 1998  相似文献   

14.
制备以聚酯(PET)为支撑层,白炭黑填充的聚二甲基硅氧烷(PDMS107)为皮层的硅橡胶复合膜,并以乙醇水物系为料液,对比分析白炭黑增强硅橡胶复合膜的渗透蒸发分离性能,分离因子比空白膜有所提高,在乙醇浓度为3%~5%时,分离因子可达16.09,渗透通量为75.39 g/m2·h;测定填充白炭黑硅橡胶复合膜的拉伸强度,结果表明:拉伸强度可达1.828 MPa,相当于空白膜(0.368 MPa)的5倍.  相似文献   

15.
酿酒酵母在硅橡胶膜生物反应器中连续发酵的生长动力学   总被引:11,自引:0,他引:11  
实验研究了酿酒酵母在硅橡胶膜生物反应器中的细胞生长速率与操作参数之间的关系。在三水平正交实验基础上,用Gauss Newton非线性最小二乘法拟合了细胞比生长率与葡萄糖浓度、乙醇浓度和细胞浓度3变量之间的关系式,得到硅橡胶膜生物反应器乙醇连续发酵的细胞最大比生长率、饱和常数、产物抑制常数和群聚抑制常数等基本动力学参数,表明当细胞浓度达到15g/L或乙醇浓度达到70g/L时细胞生长受到完全抑制。连续发酵实验验证了硅橡胶膜生物反应器中的细胞生长动力学满足拟合模型的规律。  相似文献   

16.
BACKGROUND: A closed‐circulating system for ethanol fermentation was constructed by coupling a cell‐immobilized bed fermentor with pervaporation using a composite PDMS membrane. A continuous fermentation experiment was carried out for about 250 h in the system at 28 °C. RESULTS: The cell density in the immobilized bed was up to 1.76 × 1010 cells g?1 gel. The ethanol concentration in the broth was maintained at about 43 g L?1. The glucose utilization and ethanol productivity were 23.26 g L?1 h?1 and 9.6 g L?1 h?1, respectively. The total flux and the ethanol flux through the membrane pervaporation unit varied in the range 300–690 g m?2 h?1 and 61–190 g m?2 h?1, respectively. The average ethanol concentration in the permeate was 23.1% (wt%). The carbon recovery efficiency was 86.8% (wt%), determined by calculating the carbon balance kinetics. The effect of ethanol concentration in the broth on the ethanol productivity was analyzed by modeling product formation kinetics of the system. CONCLUSIONS: Compared with the traditional free cell fermentation system and packed bed fermentation system, the closed‐circulating system has the promising features of higher glucose utilization and ethanol productivity, and cleaner production. Copyright © 2010 Society of Chemical Industry  相似文献   

17.
《分离科学与技术》2012,47(4):523-536
The ability of homogeneous and mixed matrix membranes prepared using standard silicone rubber, poly(dimethylsiloxane) (PDMS), and fluorosilicone rubber, poly(trifluoropropylmethylsiloxane) (PTFPMS), to dehydrate ethanol by pervaporation was evaluated. Although PDMS is generally considered to be the benchmark hydrophobic membrane material in pervaporation, water/ethanol molar permselectivity of a pure PDMS membrane was found to be 0.89 for a feed containing 80/20 w/w ethanol/water at 50°C, indicating a slight selectivity for water. Fluorinated groups in PTFPMS improved the water-ethanol permselectivity to 1.85, but decreased the water permeability from 9.7 × 10?12 kmol · m/m2 · s · kPa in PDMS to 5.1 × 10?12 kmol · m/m2 · s · kPa (29,000 and 15,200 Barrer, respectively). These water permeabilities are attractive, particularly since the rubbery materials should not experience the steep declines in water permeability observed with most standard dehydration membranes as water concentration in the feed decreases. However, the water selectivity is lower than desired for most applications. Particles of hydrophilic zeolite 4A were loaded into both PDMS and PTFPMS matrices in an effort to boost water selectivity and further improve water permeability. Water-ethanol permselectivities as high as 11.5 and water permeabilities as high as 23.2 × 10?12 kmol · m/m2 · s · kPa were observed for the PTFPMS/zeolite 4A mixed matrix membranes?6 times higher than for the unfilled PTFPMS membrane.  相似文献   

18.
乙醇发酵与渗透汽化在硅橡胶膜生物反应器中的耦合强化   总被引:9,自引:0,他引:9  
用硅橡胶膜生物反应器(SMBR)实验研究了发酵-渗透汽化的耦合性能。发酵微生物采用酿酒活性干酵母,所用的碳源为工业级葡萄糖。间歇发酵过程由于产物抑制作用在乙醇浓度达到90g稬-1时就趋于停滞,而经耦合渗透汽化膜分离后,发酵罐内的乙醇浓度迅速降低并维持在40g稬-1,且发酵在此浓度下可以连续稳定地进行。 在SMBR运行达到稳态后,乙醇的体积产率为1.5gL-1h-1。SMBR中所用的聚二甲基硅氧烷(PDMS)复合膜由实验室自行制备,它能稳定分离含有酵母细胞的发酵液。当发酵液中乙醇浓度为92.7~49.5g稬-1时,PDMS复合膜的总通量为1490~1164g穖-2h-1,分离因子为6.9~7.8,与分离相同进料浓度的清洁模型溶液相比分别平均高出31%和14%。乙醇发酵和渗透汽化在硅橡胶膜生物反应器中能够相互耦合并得到强化。  相似文献   

19.
《分离科学与技术》2012,47(12):1609-1619
Abstract

Composite hollow fiber membranes were prepared by coating polyethersulfone hollow fibers with silicone rubber. The hollow fiber membranes so produced were found to be water selective when they were used for the separation of feed ethanol/water mixtures by pervaporation. When fructose was added to feed ethanol/water mixtures, a decrease in permeation rate and an increase in water selectivity were observed. The decrease in the permeation rate was possible to assume, but the noticed increase in water selectivity was against our expectation, since the vapor pressure of water decreases while that of ethanol increases when sugars are added to mixtures of ethanol and water. Water selectivity of the membrane was enhanced with an increase in the amount of fructose in the feed.  相似文献   

20.
硅橡胶复合膜用于新型白酒风味成分渗透汽化分离   总被引:4,自引:0,他引:4  
许荣强  肖泽仪  黄卫星  曾凡骏  曾里  严志勇 《精细化工》2004,21(11):847-850,860
用自制硅橡胶PDMS平板复合膜,分别在30、35、40℃和1325Pa膜下侧压力的条件下,渗透蒸发分离50°新型白酒中的风味物质。实验结果表明,PDMS复合膜对新型白酒风味物质具有良好的选择分离性能:5种酯类(乳酸乙酯除外)和乙缩醛的分离脱除率达100%,对高级醇也有良好的分离表现,乙醛的脱除率也超过87%。将分离后的酒液进行重组,得到较原酒品质更高的新酒,其感官评价大大好于原酒。膜在高浓度乙醇中能保持良好的稳定性,30、35和40℃时,对新型白酒的平均总渗透通量分别可达2297g/(m2·h)、2753g/(m2·h)和3539g/(m2·h),平均分离因子(均按乙醇-水体系计算)分别为5 22、5 22和5 32。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号