首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
采用不同的浇注温度和压射比压进行了汽车用新型AZ91-SrCe镁合金的压铸试验,并进行了显微组织和高温耐磨性的测试与分析。结果表明,在浇注温度670~710℃、压射比压30~70 MPa,随浇注温度和压射比压的提高,合金的平均晶粒尺寸和高温磨损体积先下降后提高,高温耐磨性先增加后减小。在浇注温度690℃和压射比压60MPa时,合金的平均晶粒尺寸最小(25μm),高温磨损体积最小(51×10~(-3)mm~3)。AZ91-SrCe镁合金压铸时,浇注温度和压射比压分别优选为690℃和60 MPa。  相似文献   

2.
采用不同的压铸工艺对新型机械外壳用Mg-Al-Zn-Ti-V镁合金试样进行了铸造,并进行了耐磨损性能和力学性能的测试与分析。结果表明:随浇注温度、压射速度和压射比压的增加,试样的耐磨损性能和强度均先提升后下降。新型机械外壳用镁合金的压铸工艺参数优选为:700℃浇注温度、3 m/s压射速度、80 MPa压射比压。与640℃压铸温度相比,当浇注温度为700℃时,Mg-Al-Zn-Ti-V镁合金的磨损体积减小48.1%、抗拉强度增大33 MPa;与1 m/s压射速度相比,当压射速度为3 m/s时合金的磨损体积减小36.4%、抗拉强度增大29 MPa;与50MPa压射比压相比,当压射比压为80 MPa时合金的磨损体积减小50.0%、抗拉强度增大31 MPa。  相似文献   

3.
采用不同熔炼温度、浇注温度和浇注速度进行了ZG35CrV钢新型机械垫块的铸造,并进行了冲击磨料磨损试验。结果表明:熔炼温度1580℃时,垫块冲击磨料磨损体积较1520℃熔炼时(磨损体积23.0×10~(-3) mm~3)减小47.8%;浇注温度1550℃时,垫块冲击磨料磨损体积较1600℃浇注时(磨损体积26.0×10~(-3) mm~3)减小53.8%;浇注速度300 mm/min时,垫块冲击磨料磨损体积较700 mm/min浇注时(磨损体积24.0×10~(-3) mm~3)减小50%。ZG35CrV新型机械垫块的熔炼温度、浇注温度和浇注速度分别优选为:1580℃、1550℃、300 mm/min。  相似文献   

4.
采用不同浇注温度制备了机械零件用铸造Al-Si-V铝合金,并进行了高温磨损和高温氧化试验。结果表明,浇注温度在680~740℃时,合金的高温磨损性能和高温抗氧化性能均先提高后下降。与680℃浇注温度的合金相比,710℃浇注的合金500℃高温磨损体积在62×10~(-3) mm~3的基础上减小33×10~(-3) mm~3,500℃×24 h高温氧化后的质量变化率从13.4%减小到7.8%。合金的浇注温度优选为710℃。  相似文献   

5.
采用不同的锻压力、启锻时间和保压时间进行了6063铝合金的铸锻复合成形,并进行了室温力学性能和耐磨损性能的测试和分析。结果表明,随锻压力从70 MPa增加到150MPa、启锻时间从2 s增加到6s、保压时间从5 s增加到35 s,试样的力学性能和耐磨损性能均先提升后下降。与70 MPa锻压力相比,采用130 MPa锻压力时合金的抗拉强度增大42 MPa、磨损体积减小18×10~(-3)mm~3;与2 s启锻时间相比,采用6 s启锻时间时合金的抗拉强度增大17 MPa,磨损体积减小7×10~(-3)mm~3;与5 s保压时间相比,采用25 s保压时间时合金的抗拉强度增大29 MPa,磨损体积减小13×10~(-3)mm~3。6063铝合金的铸锻复合成形工艺参数优选为:130 MPa锻压力、4s启锻时间和25 s保压时间。  相似文献   

6.
在1475~1575℃浇注温度、1~9 min浇注时间内,进行了ZG25CrV新型建筑扣件的铸造试验,并进行了耐磨性和耐蚀性的测试与分析。结果表明,扣件耐磨性和耐蚀性随浇注温度提高、浇注时间延长而先提高后下降。浇注温度不宜过高也不宜过低,浇注时间不宜过长也不宜过短。与1475℃浇注温度相比,1550℃浇注时扣件的磨损体积(10.5×10~(-3)mm~3)减小57.7%,腐蚀电位正移135mV(-0.824→-0.689V);与9 min浇注时间相比,当浇注时间为3 min时扣件的磨损体积(10.5×10~(-3)mm~3)减小51.6%,腐蚀电位正移129 m V(-0.818→-0.689V)。ZG25CrV钢建筑扣件的浇注温度和浇注时间分别优选为1550℃、8 s。  相似文献   

7.
采用不同的液态模锻工艺参数进行了汽车用AZ80镁合金转向节臂的成形,并进行了试样的耐磨性能和冲击性能的测试与分析。结果表明:随浇注温度从690℃增至770℃,模具预热温度从200℃增至320℃,试样的耐磨性能和冲击性能均先提高后下降。与690℃浇注相比,当浇注温度提高到750℃时试样的磨损体积减小31%(从26.0×10~(-3)mm~3到17.9×10~(-3)mm~3),冲击吸收功增大27%(从41.1J到52.2J);与模具预热200℃相比,当模具预热温度提高到280℃时试样的磨损体积减小36%(从28.0×10~(-3)mm~3到17.9×10~(-3)mm~3),冲击吸收功增大24%(从42.1J到52.2J)。液态模锻AZ80镁合金汽车转向节臂的浇注温度和模具预热温度分别优选为750℃和280℃。  相似文献   

8.
采用不同的液态模锻工艺参数对汽车铝轮辋进行了成形,并进行了磨损和腐蚀性能的测试与分析。结果表明:比压为120 MPa时,与660℃浇注相比,720℃浇注试样的磨损体积减小了32%,腐蚀电位正移了116 m V。浇注温度为720℃时,与100 MPa成形的试样相比,120 MPa成形时试样的磨损体积减小了21%,腐蚀电位正移了92 m V。随浇注温度从660℃升高至740℃、比压从100 MPa升高至130 MPa,汽车铝轮辋的耐磨损性能和耐腐蚀性能均先提高后下降。适宜的浇注温度和比压分别为720℃和120 MPa。  相似文献   

9.
采用不同的浇注温度和保压比压对Al-10Si-3Cu-0.5V-0.2Ti铝合金机械外壳试样进行了压力铸造试验,并进行了耐磨损性能和耐腐蚀性能的测试与分析。结果表明:随浇注温度和保压比压的升高,试样的磨损体积先减小再增大,腐蚀电位先正移后负移,耐磨、耐腐蚀性能均表现为先提升再下降。在720℃浇注温度和60MPa保压比压下,试样的磨损体积最小,腐蚀电位最正。在这个条件下磨损体积为22×10~(-3)mm~3,腐蚀电位为0.846V。  相似文献   

10.
采用不同浇注温度进行了40Cr VZr钢新型数控机床主轴的铸造,并进行了拉伸和磨损性能的测试与分析。结果表明:随浇注温度从1500℃增至1620℃,主轴的拉伸性能和磨损性能均先提高后下降。与1500℃浇注相比,1575℃浇注时主轴的抗拉强度和屈服强度分别增大56、50 MPa,断后伸长率减小,磨损体积减小15×10~(-3)mm~3。主轴的浇注温度优选为1575℃。  相似文献   

11.
采用不同的比压和浇注温度进行了汽车轴承架用Zn-Al合金的液态模锻,并进行了耐磨损性能和显微组织的测试与分析。结果表明:随比压从25MPa增大至65 MPa,浇注温度从550℃升高至630℃,汽车轴承架用Zn-Al合金试样的组织改善程度先增大后减小,耐磨损性能先提高后下降。与25 MPa相比,比压45 MPa使试样的磨损体积和平均晶粒尺寸分别减小了41%和33%;与550℃相比,浇注温度610℃使试样的的磨损体积和平均晶粒尺寸分别减小了49%和40%。汽车轴承架用Zn-Al合金的液态模锻工艺参数比压和浇注温度分别优选为45 MPa和610℃。  相似文献   

12.
《热加工工艺》2021,50(7):92-96
采用不同的浇注温度和比压对AZ31镁合金汽车轮毂进行了液态模锻成形,并进行了显微组织、耐磨损性能和耐腐蚀性能的测试与分析。结果表明:随比压和浇注温度的增加,轮毂试样的平均晶粒尺寸和磨损体积均先减小后增大,腐蚀电位先正移后负移,耐磨损性能和耐腐蚀性能先提升后下降。与30 MPa比压相比较,50 MPa比压时试样的平均晶粒尺寸和磨损体积分别减小了27.39%、41.67%,腐蚀电位正移了36 m V。与680℃浇注温度相比,700℃浇注时试样的平均晶粒尺寸和磨损体积分别减小了33.33%、47.5%,腐蚀电位正移了47 m V。AZ31镁合金汽车轮毂的液态模锻工艺参数优选为:50 MPa比压、700℃浇注温度。  相似文献   

13.
采用不同的浇注温度和加压压力对汽车缸盖用新型铝合金进行了低压铸造试验,并对试样进行了高温摩擦磨损性能和力学性能的测试和分析。结果表明:随浇注温度的升高和压力的增大,试样的磨损体积和断后伸长率先减小后增大,抗拉强度先增大后减小,高温摩擦磨损性能和强度均先提升后下降。与690℃浇注相比,710℃浇注时的磨损体积(21×10-3mm3)减小43.2%,抗拉强度(249MPa)增大16.9%,断后伸长率变化幅度较小;与0.02 MPa压力相比,0.03 MPa压力铸造时的磨损体积(21×10-3mm3)减小25%,抗拉强度(249MPa)增大2.9%,断后伸长率变化幅度较小。汽车缸盖用新型铝合金的铸造工艺参数优选为:710℃浇注温度、0.03 MPa压力。  相似文献   

14.
采用模糊PID(比例-积分-微分)控制的智能控制技术对6061铝合金锻压温度进行了控制,并进行了合金力学性能和磨损性能的测试与分析。结果表明,与常规PID控制相比,使用模糊PID智能控制能使合金抗拉强度增大28MPa,屈服强度增大33 MPa,室温20 min磨损体积减小13×10~(-3)mm~3(从36×10~(-3)减小到23×10~(-3)mm~3),合金强度和磨损性能得到提高。  相似文献   

15.
采用不同浇注温度和型腔真空压力进行了AM50Ce汽车镁合金的真空压铸试验,并进行了显微组织和力学性能的测试与分析。结果表明:在650~730℃浇注温度和1~30 kPa型腔真空压力,随浇注温度升高,型腔真空压力减小合金的强度先提高后下降。与650℃浇注相比,型腔真空压力8 KPa690℃浇注时合金抗拉强度增大89MPa(从174到263MPa),平均晶粒尺寸减小16μm(从22到6μm);690℃浇注时,与30 kPa型腔真空压力相比,采用8kPa型腔真空压力时合金抗拉强度增大71MPa(从192到263 MPa),平均晶粒尺寸减小14μm(从20到6μm)。合金的浇注温度和型腔真空压力分别优选为690℃、8 kPa。  相似文献   

16.
采用三种不同方式对AZ61镁合金锻造温度进行了控制,测试和分析了锻件的力学性能、磨损性能和显微组织。结果表明,锻造温度的模糊PID控制有助于细化锻压态AZ61镁合金晶粒,提高合金的强度和磨损性能。与无PID控制相比,模糊PID控制获得的锻态AZ61镁合金抗拉强度增大24 MPa(从290 MPa增加到314 MPa),屈服强度增大26 MPa(从185 MPa增加到211 MPa),磨损体积减小22×10~(-3)mm~3(从42×10~(-3)mm~3减小到20×10~(-3)mm~3),平均晶粒尺寸减小9.3μm(从17.4μm减小到8.1μm)。  相似文献   

17.
采用不同浇注温度和压射比压进行了AZ80-0.5Ce镁合金机械外壳压铸,并进行了力学性能和显微组织的测试与分析。结果表明:当浇注温度从650℃提高到730℃、压射比压从40 MPa增大到70 MPa时,外壳力学性能先提高后下降。(与650℃浇注相比,690℃浇注时外壳的平均晶粒尺寸由14.9μm减小到10.0μm,减小了32.4%;抗拉强度和屈服强度分别由251、216 MPa增大到288、252 MPa,分别增大14.7%、16.7%。与压射比压40 MPa相比,压射比压为60 MPa时的外壳平均晶粒尺寸由13.8μm减小到10.0μm,减小27.5%;抗拉强度和屈服强度分别由253、218 MPa增大到288、252MPa,分别增大13.8%、15.6%)。AZ80-0.5Ce镁合金机械外壳压铸的浇注温度优选为690℃,压射比压优选为60 MPa。  相似文献   

18.
在不同的浇注温度和压射比压下进行了ADC12-0.15V0.03In铝合金箱盖试样的压铸成形,并进行了耐磨损性能和耐腐蚀性能的测试、对比和分析。结果表明:随浇注温度的升高和压射比压的增大,箱盖试样的磨损体积和质量损失率均先迅速减小再缓慢增大,耐磨损性能和耐腐蚀性能先迅速提升后略有下降。在685℃浇注温度和95 MPa压射比压下,压铸试样的磨损体积和质量损失率最小,耐磨损性能和耐腐蚀性能最好。箱盖试样的压铸工艺参数优选为:685℃浇注温度和95 MPa压射比压。  相似文献   

19.
采用不同的始锻温度和终锻温度进行了建筑用铝基复合材料的锻造成形,并进行了耐磨损性能和力学性能的测试与分析。结果表明:随始锻温度从450℃提高至550℃,终锻温度从350℃提高至430℃,建筑用铝基复合材料的磨损体积先减小后增大、抗拉强度先增大后减小、断后伸长率变化不大,耐磨损性能和力学性能呈先提升后下降的趋势。当始锻温度为500℃时,建筑用铝基复合材料的磨损体积和抗拉强度分别较450℃始锻时减小了17×10~(-3)mm~3和增大了37 MPa;当终锻温度为410℃时,建筑用铝基复合材料的磨损体积和抗拉强度分别较350℃终锻时减小了15×10~(-3)mm~3和增大了30 MPa。建筑用铝基复合材料的始锻温度和终锻温度分别优选为500和410℃。  相似文献   

20.
采用不同的浇注温度和比压对ZA12-0.6Sr锌合金机械圆环试件进行了液态模锻试验,并进行了热疲劳性能和耐磨损性能的测试与分析。结果表明:随浇注温度和比压的增加,试样的主裂纹平均深度和磨损体积均先减小后增大,热疲劳性能和耐磨损性能均先提升后下降。与560℃浇注温度相比,600℃浇注温度下试样的主裂纹平均深度和磨损体积分别减小了38.1%、25%;与80 MPa比压相比,120 MPa下试样的主裂纹平均深度和磨损体积分别减小了31.58%、22.58%。ZA12-0.6Sr锌合金圆环的液态模锻工艺参数优选为:浇注温度600℃和比压120 MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号