首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of iced storage of two species of bigeye snapper, Priacanthus tayenus and P macracanthus, on the gel‐forming ability of the resulting surimi was investigated. Upon iced storage, whole fish underwent deterioration faster than beheaded/eviscerated fish. Total volatile base and trimethylamine contents of whole fish were higher than those of beheaded/eviscerated fish, particularly after 9 days of storage (P < 0.05). P macracanthus muscle was more susceptible to proteolytic degradation than P tayenus muscle. Ca2+‐ATPase activity decreased as the storage time increased (P < 0.05), indicating the denaturation of myosin. A marked decrease in Ca2+‐ATPase activity was found in whole fish kept for more than 6 days in ice (P < 0.05). Breaking force and deformation of surimi gels from both species decreased, with a concomitant decrease in whiteness, as the storage time increased (P < 0.05). Beheading and evisceration of fish retarded the deterioration. However, the gel‐forming ability of surimi produced from both species decreased continuously throughout iced storage (P < 0.05), probably owing to the denaturation and degradation of myofibrillar proteins. © 2002 Society of Chemical Industry  相似文献   

2.
Proteolytic activity in muscle from two species of bigeye snapper (Priacanthus macracanthus and Priacanthus tayenus) was studied. Autolysis of mince and washed mince at 50 and 60 °C was compared. Higher degradation of myosin heavy chain was observed in both mince and washed mince from P macracanthus than in those from P tayenus, especially when the incubation time was increased. Autolysis of washed mince from both species was inhibited by soybean trypsin inhibitor, suggesting that myofibril‐associated proteases were serine proteases. When sarcoplasmic proteolytic activity in P macracanthus muscle was studied, two activity peaks with an optimum temperature of 60 °C were observed at pH 6.5 and 8.5. The activities of both peaks were mostly inhibited by soybean trypsin inhibitor, suggesting that the major protease was a serine protease. Major sarcoplasmic proteolytic activity in P macracanthus muscle was found at Mr 62 000 on sodium dodecyl sulphate substrate gel. For P tayenus sarcoplasmic proteolytic activity, two activity peaks with an optimum temperature of 60 °C were found at pH 5.0 and 8.5. The pH 5.0 peak activity was effectively inhibited by pepstatin A, while the pH 8.5 peak activity was inhibited by several inhibitors. The results indicated that various sarcoplasmic proteases were present in P tayenus muscle. The two species contained different sarcoplasmic proteases in terms of composition and activity level. P macracanthus muscle generally had higher sarcoplasmic proteolytic activities than P tayenus muscle. Copyright © 2003 Society of Chemical Industry  相似文献   

3.
BACKGROUND: Microbial transglutaminase (MTGase) has been used to increase the gel strength of surimi. Nevertheless, its effectiveness varies with fish species. The aim of this study was to elucidate the effect of MTGase at different levels on protein cross‐linking and gel property of surimi from threadfin bream, Indian mackerel and sardine in the presence and absence of endogenous transglutaminase. RESULT: Breaking force of all surimi gels increased as MTGase levels (0–0.6 U g?1) increased except for threadfin bream surimi gel, where the breaking force decreased at 0.6 U g?1 (P < 0.05). In the presence of EDTA, the gel strengthening effect was lower, suggesting the combined effect of endogenous transglutaminase with MTGase. With the addition of MTGase, the gel with the highest increase in breaking force showed highest decrease in myosin heavy chain. When cross‐linking activity of MTGase on natural actomyosin (NAM) was determined, the highest decreasing rate in ε‐amino group content with the concomitant increased formation of cross‐linked proteins was found in NAM from threadfin bream. The reactivity of muscle proteins toward MTGase‐induced cross‐linking was in agreement with surimi gel strengthening. CONCLUSION: The composition and properties of muscle proteins of varying fish species more likely determined protein cross‐linking induced by MTGase, thereby affecting their gel properties. Copyright © 2011 Society of Chemical Industry  相似文献   

4.
Effect of setting induced by endogenous transglutaminase (TGase) in two species of bigeye snapper, Priacanthus tayenus and Priacanthus macracanthus, on gel properties and protein cross-linking was investigated. Setting at either 25 or 40 °C, prior to heating at 90 °C resulted in the increase in both breaking force and deformation of surimi from both species, particularly when setting time increased (P<0.05). A decrease in solubility of surimi gels in a mixture of sodium dodecyl-sulfate, urea and β-mercaptoethanol suggested increased formation of non-disulfide covalent bonding which coincided with increased gel strength and the decrease in myosin heavy chain (MHC) polypeptide. The optimum conditions for setting of surimi sol was found to be 40 °C for 2 h for P. tayenus and 25 °C for 3 h for P. macracanthus. Assayed by monodancylcadaverine (MDC)-incorporation method, TGase from P. tayenus and P. macracanthus exhibited an optimum temperature at 40 and 25 °C, respectively. In addition, the breaking force and deformation of surimi from both species increased markedly with the addition of calcium chloride, while they decreased considerably in the presence of EDTA, N-methylmaleimide and ammonium chloride. The results confirmed that endogenous transglutaminase played an important role in gel enhancement of surimi from both species of bigeye snapper.  相似文献   

5.
BACKGROUND: Fish collagen has been paid increasing attention as an alternative to the mammalian counterpart owing to the abundance of fish skin as a processing by‐product. Generally, the low yield of collagen extracted using the typical acid solubilisation process has led to the use of mammalian pepsin as an aid for increasing the yield. Alternatively, fish pepsin, especially from tuna stomach, can be used for the extraction of pepsin‐solubilised collagen (PSC). Therefore the objective of this study was to extract and characterise PSC from the skin of bigeye snapper, a fish widely used for surimi production in Thailand. RESULTS: PSCs from the skin of two species of bigeye snapper, Priacanthus tayenus and Priacanthus macracanthus, were extracted with the aid of tongol tuna (Thunnus tonggol) pepsin and porcine pepsin. PSCs from the skin of both species extracted using porcine pepsin had a higher content of β‐chain but a lower content of α‐chains compared with those extracted using tuna pepsin. All PSCs contained glycine as the major amino acid and had an imino acid (proline and hydroxyproline) content of 189–193 residues per 1000 residues. Transition temperatures of PSCs were in the range 30.6–31.3 °C. Fourier transform infrared spectra revealed some differences in molecular order between PSCs extracted using porcine pepsin and tuna pepsin. Nevertheless, the triple‐helical structure of PSCs was not affected by pepsin digestion. Zeta potential analysis indicated that PSCs from P. tayens and P. macracanthus possessed zero net charge at pH 7.15–7.46 and 5.97–6.44 respectively. CONCLUSION: Tongol tuna pepsin could be used as a replacement for mammalian pepsin in PSC extraction. However, a slight difference in PSC properties was found. Copyright © 2009 Society of Chemical Industry  相似文献   

6.
This study was performed to investigate the effects of mungbean protein isolates (MPI) as a meat/water binder on the MTGase‐mediated porcine myofibrillar protein (MP) gels at 0.15, 0.3, and 0.45 m salt concentrations. The general property of MP gel was evaluated by pH, cooking loss (CL) (%) and gel strength (gf). Protein–protein interactions among MPI, MTGase, and MP during cooking were also assessed using gel electrophoresis, thermal analysis and microstructure. When salt content was reduced, gel CL (%; < 0.05) was increased while pH and gel strength (gf) values were decreased (< 0.05). Addition of MTGase to MP increased pH, CL (%), and gel strength (gf) values, while co‐addition of MTGase and MPI induced synergistic effects on the MP gel strength (gf; ≥0.3 m salt concentration; < 0.05). In scanning electron micrograph images, increase of salt concentrations made MP gels more swollen and interwoven or conglomerated, regardless of treatment. In conclusion, addition of MPI and MTGase strengthened gel‐forming ability and improved cooking yield of MP gel at salt concentration (≥0.3 m ).  相似文献   

7.
Fish skin gelatin was extracted from the skin of bigeye snapper (Priacanthus macracanthus) and brownstripe red snapper (Lutjanus vitta) with yields of 6.5% and 9.4% on the basis of wet weight, respectively. Both skin gelatins having high protein but low fat content contained high hydroxyproline content (75.0 and 71.5 mg/g gelatin powder). The bloom strength of gelatin gel from brownstripe red snapper skin gelatin (218.6 g) was greater than that of bigeye snapper skin gelatin (105.7 g) (P<0.05). The addition of microbial transglutaminase (MTGase) at concentrations up to 0.005% and 0.01% (w/v) increased the bloom strength of gelatin gel from bigeye snapper and brownstripe red snapper, respectively (P<0.05). However, the bloom strength of skin gelatin gel from both fish species decreased with further increase in MTGase concentration. SDS-PAGE of gelatin gel added with MTGase showed the decrease in band intensity of protein components, especially, β- and γ- components, suggesting the cross-linking of these components induced by MTGase. Microstructure studies revealed that denser and finer structure was observed with the addition of MTGase.  相似文献   

8.
In the absence of microbial transglutaminase (MTGase), the textural properties of lizardfish surimi (Saurida spp) improved when pre‐incubated at 4 and 25 °C for 24 and 4 h, respectively. MTGase optimally catalyzed incorporation of monodansylcadaverine (MDC) into surimi at 40 °C. Addition of MTGase appeared to reduce autolytic activity at 25 and 40 °C, but had no effect on autolytic activity at 65 °C. Breaking force and deformation of lizardfish surimi significantly improved when 0.1 unit MTGase g?1 surimi (1.8 g kg?1) was added and pre‐incubated at either 25 or 40 °C. Textural properties improved concomitant with cross‐linked polymers of myosin heavy chain and tropomyosin, but not actin. Addition of MTGase also improved the storage modulus (G′). The gel network of surimi mixed with MTGase and pre‐incubated at 40 °C readily formed during the pre‐incubation period, while formation of the gel network began at 48.1 °C in the absence of MTGase. Copyright © 2005 Society of Chemical Industry  相似文献   

9.
Impact of formaldehyde (FA) at various levels (0–9 μmol/g surimi) on gel properties of surimi from lizardfish added with microbial transglutaminase (MTGase) was studied. During iced storage of 10 days, total and free FA in lizardfish flesh increased continuously (P < 0.05). In the presence of FA, breaking force of gels slightly increased, whilst the deformation decreased (P < 0.05). The addition of MTGase (0.4 units/g surimi) was able to increase gel strength and water holding capacity of resulting gel. Nevertheless, gel strengthening effect of MTGase was lowered when FA at higher level was present. Myosin heavy chain (MHC) dominantly underwent polymerisation to a higher extent when either MTGase or FA was added. The higher reduction in ε-amino group content was observed in natural actomyosin (NAM) when FA at higher levels (0–30 μmol/g protein) was incorporated. Acyl transfer reaction mediated by MTGase was impeded in NAM containing FA, especially at higher levels. Generally, FA had an adverse effect on cross-linking ability towards surimi proteins induced by MTGase. Therefore, cross-linking and gel-forming ability of lizardfish surimi could be maximised by MTGase when surimi contained no FA.  相似文献   

10.
Small-deformation oscillatory measurements have been used to study the effect of low-viscosity oxidised starch on the rheology of calcium pectinate gels formed by controlled cooling from the sol state at high temperature. Large reductions in modulus (G′; 0.5% strain; 10°C) were observed at starch concentrations below the minimum critical concentration for gelation of oxidised starch alone under the same conditions (32 wt%). This behaviour is tentatively ascribed to thermodynamic incompatibility between the two polymers causing incipient precipitation of calcium pectinate within the gel network.  相似文献   

11.
Effects of different oxidised phenolic compounds (ferulic acid, OFA; tannic acid, OTA; catechin, OCT and caffeic acid, OCF) at different levels (0–0.25% of protein content) on the properties of gels from bigeye snapper (Priacanthus tayenus) surimi were investigated. Breaking force and deformation of surimi gel varied with types and amounts of oxidised phenolic compounds. Gels added with 0.20% OFA, 0.05% OTA, 0.15% OCF and 0.05% OCT exhibited the marked increases in both breaking force and deformation, compared with the control (P < 0.05). Those increases were associated with lower expressible moisture content. No increases in both breaking force and deformation were observed when ferulic acid without oxygenation at alkaline pH was added, regardless of amount added (P > 0.05). No changes in the whiteness of gel were found with addition of OFA (P > 0.05), but the decreases in whiteness were noticeable as other oxidised phenolics were incorporated (P < 0.05). Different microstructures were obtained among gels with different oxidised phenolics. The physicochemical properties of natural actomyosin suggest that oxidised phenolics could induce conformational changes and the cross-linking through amino groups or the induction of disulphide bond formation. Therefore, the addition of oxidised phenolic compounds at the optimum level could increase the gel strength of surimi gel.  相似文献   

12.
Biopolymer mixtures impart desirable texture to foods. Dynamic rheology was used to characterize canola protein isolate (CPI)‐guar gum gels. The effects of pH, salt, guar gum and protein concentrations on the gelling ability of CPI were evaluated. Factorial and response surface optimization models were used to identify the optimum conditions (20%, w/v CPI; pH 10; 1.5%, w/v guar gum; 0.05 m NaCl) that would simultaneously maximize G′ (≥28 000 Pa) and minimize tan δ (<0.17) values of CPI‐guar gum gels. Although pH > 8 is unconventional in food systems, strong and elastic CPI‐guar gum gels (G′ =56 440 Pa; tan δ = 0.18) were produced at pH 10, whereas gels prepared at pH 6 were less elastic (G′ = 2726 Pa; tan δ = 0.2). Under the optimum conditions, CPI alone formed a stronger gel (G′ = 64 575 Pa; tan δ = 0.15) than CPI‐guar gum mixture, suggesting that guar gum interfered with protein gelation.  相似文献   

13.
To examine the potential application of microbial transglutaminase (MTGase) in oriental noodle making, the effects of various MTGase addition levels on the rheological, textural and structural properties of noodles were investigated using good quality (‘Red Bicycle’) and poor quality (‘Sandow’) wheat flours. Addition of MTGase at 5–20 g kg?1 levels, but not at 1 g kg?1 level, to the two different wheat flours decreased rapid visco‐analyser (RVA) parameters of hot paste viscosity and final viscosity while increasing breakdown. For fresh white salted noodle dough sheets, the storage modulus (G′) and loss modulus (G″) increased significantly at 1 g kg?1 MTGase addition for both types of flour, but there was no clear trend with higher levels of MTGase. For dried white salted noodles, textural parameters (tensile force, hardness and gumminess) generally increased, cooking loss was little affected and the yield of the cooked noodle was significantly decreased by MTGase. Color was slightly adversely affected. Scanning electron microscopy (SEM) results indicated that physical properties of dry noodles were improved through the formation of cross‐links [ε‐(γ‐glutamyl)lysine] by MTGase. Copyright © 2005 Society of Chemical Industry  相似文献   

14.
Some physicochemical properties and structural characteristics of microbial transglutaminase (MTGase)‐induced biopolymers of sodium caseinate (SC) were investigated. The sodium dodecyl sulfate–polyacrylamide gel electrophoresis and size‐exclusion–high‐performance liquid chromatography analyses showed that all components of SC were easily polymerized or transformed by MTGase to form high‐molecular weight biopolymers, and the susceptibility order of individual components was κ‐Casein (C) > α‐C > β‐C. The emulsifying properties of biopolymers depended on the incubation time with MTGase. The emulsifying activity index of biopolymers persistently increased with the MTGase (0–12 h) incubation time. The emulsion stability also increased with the incubation time (< 4 h), then declined a little with longer incubation (4–12 h). The differential scanning calorimetry analysis showed that the thermal properties of the biopolymers obtained after a 12‐h incubation were different from that of native SC or biopolymers obtained after a shorter incubation time (< 4 h), suggesting that the former has higher thermal stability. In addition, the ultraviolet (UV) spectra showed that the UV absorbance (at 275 nm) of MTGase‐induced biopolymers of SC decreased with an increasing incubation time with MTGase, and the maximal emission wavelength (λ max ) slightly shifted to the “blue side.” The fluorescence spectra showed that the λ max was related with incubation time with MTGase, slightly shifting to the “blue side” after 4 h with no further changes; its relative fluorescence intensity also increased. These results suggest a relationship between the functionalities and structural characteristics of the MTGase‐induced biopolymers of SC.  相似文献   

15.
Effect of chitosan on barred garfish (Hemiramphus far) surimi gel was studied in the presence of EDTA and microbial transglutaminase (MTGase). An increase in breaking force of surimi gels added with 1.0% prawn shell chitosan indicated the gel enhancing effect of chitosan on the heat‐induced gelation of fish myofibrillar proteins. However, gel‐forming ability of surimi containing chitosan was inhibited in the presence of EDTA, especially at higher concentration. Therefore, the enhancing effect of chitosan was possibly mediated through the action of endogenous transglutaminase (TGase) during setting, resulting in the formation of protein‐protein and protein‐chitosan conjugates. In general, addition of MTGase remarkably increased both breaking force and deformation of surimi gel (P<0.05). However, enhancing effect of MTGase was retarded in the presence of chitosan, resulting in lower magnitude of breaking force and deformation (P<0.05). Scanning electron microscopy showed that chitosan particles were uniformly dispersed in the gel matrix. A tightly associated gel network was formed in surimi containing MTGase, whereas a large number of voids were noted in gels with EDTA. These results suggest that chitosan acted as a surimi gel enhancer in combination with endogenous TGase in fish muscle, but hindered gel formation in the presence of MTGase.  相似文献   

16.
The effect of sucrose at different concentrations (0, 10, 20 and 30%) on rheological properties of rice starch pastes (5% w/w) was investigated in steady and dynamic shear. The steady shear properties of rice starch‐sucrose composites were determined from rheological parameters for power law and Casson flow models. At 25°C all the starch‐sucrose composites exhibited a shear‐thinning flow behavior (n=0.25–0.44). The presence of sucrose resulted in the decrease in consistency index (K), apparent viscosity (ηa,100) and yield stress (σoc). Dynamic frequency sweeps at 25°C indicated that starch‐sucrose composites exhibited weak gel‐like behavior with storage moduli (G′) higher than loss moduli (G′′). G′ and G′′ values decreased with the increase in sucrose concentration. The dynamic (η*) and steady‐shear (ηa) viscosities at various sucrose concentrations did not follow the Cox‐Merz superposition rule. G′ values as a function of aging time (10 h) at 4°C showed a pseudoplateau region at long aging times. In general, the values of G′ and G′′ in rice starch‐sucrose composites were reduced in the presence of sucrose and depended on sucrose concentration.  相似文献   

17.
Amaranth starch (Amaranthus cruentus L. and Amaranthus hypochondriacus L.) in this investigation possessed a relatively small and uniform granule size of a type “A” pattern obtained by X‐ray diffraction, with the degree of crystallinity ranging from 24.5 to 27.9%. This was followed by work on steady and dynamic rheological properties on shear of seven native amaranth starches. Aqueous pastes (5% solids) exhibited shear‐thinning behavior, and the flow behavior was fitted with the Herschel–Bulkley equation (regression coefficients were over 0.99). Cultivar V69 showed much higher G′ (storage modulus) and G″ (loss modulus) than the other samples and produced a solid‐like gel, which could be attributed to the high amylose content of its network. Correlation analysis revealed that amylose content was positively correlated with G′ and negatively with the loss tangent (tan δ) of the material.  相似文献   

18.
ABSTRACT:  The effects of microbial transglutaminase (MTGase) at different levels (0 to 0.8 units/g sample) on the properties of gels from lizardfish ( Saurida undosquamis ) mince set at 25 °C for 2 h or 40 °C for 30 min prior to heating at 90 °C for 20 min were studied. Breaking force and deformation of gels increased with increasing MTGase amount added ( P < 0.05). At the same MTGase level used, gels with the prior setting at 40 °C for 30 min showed a higher breaking force compared with those subjected to prior setting at 25 °C for 2 h ( P < 0.05). Sodium dodecyl sulfate-polyacrylamide gel electrophoretic study revealed that myosin heavy chain (MHC) underwent polymerization to a higher extent in the presence of MTGase. Regardless of setting condition, microstructure of gel added with MTGase was finer with a smaller void compared with that of gel without MTGase. Therefore, setting temperature affected the property of gels added with MTGase. Gel properties of mince obtained from lizardfish stored in ice for different times (0 to 10 d) with and without MTGase at a level 0.6 units/g were determined. Irrespective of MTGase addition, breaking force and deformation of all gels decreased as the storage time of lizardfish increased ( P < 0.05). The addition of MTGase was able to increase both breaking force and deformation of the resulting gel produced from lizardfish kept in ice for all storage times used. Therefore, both freshness and MTGase addition had the direct impact on gel properties of lizardfish mince.  相似文献   

19.
Rheological properties of rice starch‐galactomannan mixtures (5%, w/w) at different concentrations (0, 0.2, 0.4, 0.6 and 0.8%, w/w) of guar gum and locust bean gum (LBG) were investigated in steady and dynamic shear. Rice starch‐galactomannan mixtures showed high shear‐thinning flow behaviors with high Casson yield stress. Consistency index (K), apparent viscosity (ηa,100) and yield stress (σoc) increased with the increase in gum concentration. Over the temperature range of 20–65°C, the effect of temperature on apparent viscosity (ηa,100) was described by the Arrhenius equation. The activation energy values (Ea = 4.82–9.48 kJ/mol) of rice starch‐galactomannan mixtures (0.2–0.8% gum concentration) were much lower than that (Ea = 12.8 kJ/mol) of rice starch dispersion with no added gum. Ea values of rice starch‐LBG mixtures were lower in comparison to rice starch‐guar gum mixtures. Storage (G′) and loss (G′′) moduli of rice starch‐galactomannan mixtures increased with the increase in frequency (ω), while complex viscosity (η*) decreased. The magnitudes of G′ and G′′ increased with the increase in gum concentration. Dynamic rheological data of ln (G′, G′′) versus ln frequency (ω) of rice starch‐galactomannan mixtures have positive slopes with G′ greater than G′′ over most of the frequency range, indicating that their dynamic rheological behavior seems to be a weak gel‐like behavior.  相似文献   

20.
Effect of freezing and frozen storage on gel‐forming ability of muscle from fresh water fish, common carp (Cyprinus carpio), was investigated. Fresh carp meat had good gel‐forming ability as revealed by large strain test (gel strength of 1027 g·cm) and dynamic viscoelastic behavior. Freezing and frozen storage at ?18C for 180 days significantly (P < 0.01) reduced the gel‐forming ability of common carp meat. Reduction in protein solubility and calcium‐activated adenosinetriphosphatase enzyme activity of common carp meat during frozen storage was also significant (P < 0.05). Structural change of proteins during frozen storage was evident from reduced viscosity and gel filtration profile. Higher drip loss and reduction in gel‐forming ability of carp meat is attributed to denaturation of proteins during frozen storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号