共查询到20条相似文献,搜索用时 15 毫秒
1.
逆向工程中的三维测量数据点云的分割 总被引:2,自引:0,他引:2
以线激光一机器视觉测量方式得到的曲面数据云为基础,探讨了曲面密集三维散乱点群数据的分割技术.根据线激光测量方式和三维点群分布的特点,建立了恰当的数据结构在计算机中表示散乱点群.并通过树形的空间结构完成对密集散乱点群空间分割,由此实现对散乱点群数据的几何分割。 相似文献
2.
在逆向工程中用神经网络实现点云数据分区 总被引:3,自引:0,他引:3
点云的数据分区问题是逆向工程中的一个瓶颈问题。论文在传统的自组织特征映射(SOFM)神经网络的基础上,用多层自组织特征映射(MLSOFM)神经网络实现逆向工程中点云的数据分区,克服了SOFM用于数据分区的局限性,不需预先指定分区的数目,实例运行结果验证了此方法的可行性。 相似文献
3.
反求工程中的点云切片算法研究 总被引:17,自引:0,他引:17
提出了一种快速有效的点云切片算法.该算法基于空间栅格划分建立离散点之间的拓扑关联信息,通过高效的平面点云求交算法构造平面散乱点列;并基于多项式时间复杂度的混合式曲线重建算法实现了任意非均匀分布平面点列的多义线重组.应用实例表明:文中算法快速准确,稳定可靠. 相似文献
4.
点云数据中空洞区域的自动补测算法 总被引:1,自引:2,他引:1
通过引入平均误差及平均曲率影响因子,自动计算出补测空洞的影响区域,进而利用影响区域内的数据构造连续曲面并计算出空洞内的数据点.文中算法是一个具有自适应特性的数据补测算法. 相似文献
5.
6.
为降低室外大规模点云场景中多类三维目标语义分割的计算复杂度,提出一种融合区块特征的语义分割方法。采用方形网格分割方法对三维点云进行区块划分、采样以及组合,求取简化的点云组合区块集,将其输入至区块特征提取和融合网络中从而获得每个区块的特征修正向量。设计点云区块全局特征修正网络,以残差的方式融合特征修正向量与原始点云全局特征,修正因分割造成的错误特征。在此基础上,将方形网格分割尺寸作为神经网络的参数引入反向传播过程中进行优化,从而建立高效的点云语义分割网络。实验结果表明,反向传播算法可以优化分割尺寸至最佳值附近,所提网络中的全局特征修正方法能够提高语义分割精度,该方法在Semantic3D数据集上的语义分割精度达到78.7%,较RandLA-Net方法提升1.3%,且在保证分割精度的前提下其点云预处理计算复杂度和网络计算时间明显降低,在处理点数为10万~100万的大规模点云时,点云语义分割速度较SPG、KPConv等方法提升2~4倍。 相似文献
7.
点云数据蕴含丰富的空间信息,可以通过激光雷达、3D传感器等设备大量采集,被广泛应用于自动驾驶、虚拟现实、城市规划和3D重建等领域。点云语义分割作为3D场景理解、识别和各种应用的基础而受到广泛关注。但不规则的点云数据无法直接作为传统卷积神经网络的输入,而图卷积神经网络可以利用图卷积算子直接对点云数据进行特征提取,使得图卷积神经网络已逐步成为点云语义分割领域的一个重要研究方向。基于此,对图卷积神经网络在3D点云语义分割应用中的研究进展进行综述,根据图卷积的类型对基于图卷积神经网络的点云语义分割方法进行分类,按照不同类别对比分析主流方法的模型架构及其特点,描述几个相关点云语义分割领域常用的公共数据集和评价指标,对点云语义分割方法进行总结和展望。 相似文献
8.
点云分割是点云数据理解中的一个关键技术,但传统算法无法进行实时语义分割。近年来深度学习被应用在点云分割上并取得了重要进展。综述了近四年来基于深度学习的点云分割的最新工作,按基本思想分为基于视图和投影的方法、基于体素的方法、无序点云的方法、有序点云的方法以及无监督学习的方法,并简要评述;最后分析各类方法优劣并展望未来研究趋势。 相似文献
9.
基于视频的点云压缩(Video based point cloud compression, V-PCC)为压缩动态点云提供了高效的解决方案, 但V-PCC从三维到二维的投影使得三维帧间运动的相关性被破坏, 降低了帧间编码性能. 针对这一问题, 提出一种基于V-PCC改进的自适应分割的视频点云多模式帧间编码方法, 并依此设计了一种新型动态点云帧间编码框架. 首先, 为实现更精准的块预测, 提出区域自适应分割的块匹配方法以寻找最佳匹配块; 其次, 为进一步提高帧间编码性能, 提出基于联合属性率失真优化(Rate distortion optimization, RDO)的多模式帧间编码方法, 以更好地提高预测精度和降低码率消耗. 实验结果表明, 提出的改进算法相较于V-PCC实现了−22.57%的BD-BR (Bjontegaard delta bit rate)增益. 该算法特别适用于视频监控和视频会议等帧间变化不大的动态点云场景. 相似文献
10.
基于自组织特征映射神经网络构建的三角形网格模型可以实现测量点云
压缩后的Delaunay 三角逼近剖分,但该模型存在逼近误差和边缘误差。为减小三角形网格
的逼近误差和边缘误差,构建了精确逼近的三角形网格模型。首先采用整个测量点云,对三
角形网格模型中的所有神经元进行整体训练;然后对三角形网格中的网格神经元的位置权
重,沿网格顶点法矢方向进行修正;最后采用测量点云中的边界点集,对三角形网格模型中
的网格边界神经元进行训练。算例表明,应用该模型,可以有效减小三角形网格的边缘误差,
三角形网格逼近散乱点云的逼近精度得到大幅提高并覆盖散乱点云整体分布范围。 相似文献
11.
深度学习已成为点云分析的主要方法,但是现有方法在点云特征抽象时无法充分参考局部形状信息,因此对局部形状变化感知的鲁棒性较差,难以针对形状特征生成合适的卷积核。为此,提出了局部关系卷积(local relation convolution,LRConv),一种通过全面局部关系感知形状特征的卷积算子。参考点云局部中所有邻域点之间的低维空间关系,定义了一种不依赖于点的顺序与刚性变换的局部关系描述;使用多层感知机从关系描述中学习得到局部区域中每个点对应的卷积权重;通过卷积权重来变换点的特征,并聚合局部区域的抽象特征。在基准测试实验中,LRConv分类网络在ModelNet上的分类准确率较PointNet++提高了2.1个百分点,LRConv零件分割网络在ShapeNet上的分割类别平均重合度较PointNet++提高了1.5个百分点。实验结果充分验证了LRConv在特征抽象中的有效性。 相似文献
12.
在曲面重构中,由于实际的曲面模型往往含有多个曲面几何特征,即由多张曲面组成,如果对使用激光法测量的“点云”数据直接进行拟合,将会造成曲面模型的数学表示和拟合算法处理的难度加大,甚至无法用较简单的数学表达式描述曲面模型,因此针对该问题,提出了一种基于数据点曲率变化的区域分割方法,即先对每一条扫描线上的数据点求取曲率值,然后将其中曲率值变化较大的点提取出来作为边界点,当边界确定后,再将云点数据分割成多个区域,由于每个区域一般具有较简单的几何特征,因此可用简单的数学模型来描述,并可重构单张曲面。该算法不仅原理简单、易于理解和编程,而且能提高曲面模型重构效率。 相似文献
13.
基于特征的反求工程建模系统RE-SOFT 总被引:14,自引:1,他引:14
RE-SOFT作为一个专业化的反求工程建模软件在业界拥有较高的知名度,其许多核心技术独具特色.介绍了该软件的整体架构、主要功能和若干关键技术.通过对数据预处理、特征提取、特征重建和编辑中的一些核心技术的介绍,展示了反求工程领域的最新研究成果.叶片反求建模的应用分析表明,应用该系统进行反求建模可以获得完整特征表达的理想CAD模型.最后总结了RE-SOFT的主要特色,并给出了今后反求工程领域的主要研究方向. 相似文献
14.
点云分割是根据空间、几何和纹理等特征对点云进行划分,使得同一划分内的点云具有相似的特征。首先对获取的散乱点云数据进行去噪、填补空洞和畸变等预处理,然后计算最小包围立方体分割点云空间并构建八叉树加速邻域点的搜索,为每个点构造最小二乘邻域,分析散乱点云数据的高斯曲率和平均曲率,再通过区域生长法得到低噪声的精确分块,自适应、智能化地对点云进行分块。经实验验证,该方法可以获得较好的分割效果。 相似文献
15.
逆向工程中经常需要把多次测量得到的点云进行配准。提出了一种基于特征点的改进ICP算法,在采用主方向贴合法实现初始配准的基础上,使用曲率特征点和k-dtree寻找最近点,提高了ICP算法的效率。该算法具有速度快精确度高的特点,并且在实际应用中验证了配准效果和算法稳定性。 相似文献
16.
利用模糊神经网络实现逆向工程中的区域分割 总被引:4,自引:2,他引:4
论文提出了一种改进的模糊自组织特征映射网络(fuzzySOFM),它不仅显著加快了聚类的速度,而且算法简单。该网络采用由数据点的坐标、估算出的法矢量和曲率构成的八维特征向量作为输入,快速地实现了逆向工程中点云数据的区域分割。与现有方法相比,该方法具有以下优点:第一,具有更高的聚类速度,并可以直接处理含噪声数据;第二,聚类的结果与数据输入的顺序无关;第三,能利用数据的隶属度快速提取出特征线数据,从而将基于面的分割和基于线的分割结合起来。实验结果证明了这种方法的有效性。 相似文献
17.
点云分割是基于点云数据空间几何信息提取的一项重要工作,它是点云数据特征提取与分析的基础。同时,点云数据通常是离散的和非结构化的,点云数据的分割不是一项简单的数据处理任务,分割效率和分割精度决定了后续数据处理工作的结果。因此,研究点云数据分割具有重要意义。提出一种基于自适应角度的三维点云切割算法,使用PCA算法找到最佳降维投射方向,以降低原始点云数据维度,并利用投射簇的概念实现对原始目标点云的切割获取。 相似文献
18.
反求工程中点云数据的二次曲面特征提取技术 总被引:14,自引:1,他引:14
基于点的连通性及同一特征面测量点几何特征相似性,在特征曲面拟合误差控制下,实现了散乱数据二次曲面的区域分割.工程应用实例表明:文中方法稳定可靠,可显著提高反求CAD建模效率与重建模型精度。 相似文献
19.
20.
有效获取点云数据在空间上的结构性特征是点云语义分割的关键。针对以往方法没有很好综合利用全局和局部特征问题,提出一种新的空间结构特征——点的盒子特征用于语义分割,设计一种编码-解码结构的网络框架,下采样过程中使用几何结构特征模块学习点云的全局空间特征和局部邻域特征,上采样过程中按分辨率逐级恢复成完整尺寸特征图进行语义分割。其中,几何结构特征模块包含两个子模块,一个是全局特征模块,该模块学习点的“盒子(box)”特征以表现点云在采样空间内概括的粗糙几何特征;另一个是局部特征模块,该模块使用特征提取——注意力机制结构表现点云在局部邻域内精确的细粒度几何特征。在公开数据集S3DIS、Semantic3D上进行了实验并与其他方法比较,实验结果表明mIoU均领先目前大部分主流的方法,部分细则类IoU取得最高。 相似文献