首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
王东  高俊刚  姚子华 《塑料》2003,32(5):7-11
以毛细管流变仪研究了PP/纳米SiO2复合材料熔体的流变行为,讨论了复合材料的组成、剪切应力和剪切速率对熔体流变行为、熔体粘度的影响,测定了熔体的非牛顿指数、熔体流动速率和膨胀比。结果表明:PP/纳米SiO2复合材料属假塑性流体,其熔体粘度随纳米SiO2含量的增加而增大,非牛顿指数和熔体流动速率均随纳米SiO2含量的增加而减小;在恒定剪切应力下,膨胀比随纳米SiO2含量的增加而减小。对复合材料的力学性能测试结果表明:纳米SiO2对PP的力学性能有显著改善作用。以扫描电镜和偏光显微镜研究了复合材料的相态学,其结果进一步证明了纳米SiO2对PP具有增强增韧作用。  相似文献   

2.
采用蒙脱土(MMT)负载的Ziegler-Natta催化剂,通过原位聚合法制备了不同MMT含量的聚乙烯(PE)/MMT纳米复合材料。利用热重分析(TGA)确定了PE/MMT纳米复合材料中MMT的含量,并使用Haake流变仪分析了MMT含量对PE/MMT纳米复合材料流变行为的影响。结果表明:PE/MMT纳米复合材料的熔体流变行为与高密度聚乙烯(HDPE)和低密度聚乙烯(LDPE)基本一致;复合材料的黏度随MMT含量的增加先升高后降低,其中当MMT含量为4.58%时,其黏度明显低于HDPE和LDPE,该性质有利于复合材料的成型加工;PE/MMT纳米复合材料属于假塑性流体,其非牛顿指数(n)随着温度的升高而增大,随着MMT含量的增加先降后升。  相似文献   

3.
采用熔融共混的方法制备了聚对苯二甲酸丙二醇酯/有机蒙脱土(PTT/MMT)纳米复合材料,通过DSC、热台偏光显微镜等研究了PTT/MMT纳米复合材料的结晶行为,测定了纳米复合材料的力学性能,并用熔体流变仪研究了PTT/MMT纳米复合材料熔体流变性能。结果表明:随着PTT/MMT纳米复合材料中蒙脱上含量的增加,PTT/MMT纳米复合材料的熔融结晶温度增高,纳米复合材料的力学性能有一定的提高;PTT-蒙脱土纳米复合材料熔体的流变性能随MMT含量的增加非牛顿性减弱,熔体的粘流活化能减小。  相似文献   

4.
制备了高密度聚乙烯(HDPE)/石墨导热复合材料,研究了该复合材料在毛细管流变仪中的流变行为。结果表明:该HDPE/石墨复合材料熔体在毛细管流变仪中的流动为非牛顿型流动,遵从假塑性流体的流动规律。随着石墨用量的增加,复合材料熔体的真实黏度、黏流活化能增大,非牛顿指数呈减小的趋势;随着剪切速率的增加,复合材料熔体的真实黏度和黏流活化能则均有所减小;而随着温度的升高,复合材料熔体的非牛顿指数呈增大的趋势。  相似文献   

5.
以毛细管流变仪研究了聚对苯二甲酸丙二酯(PTT)/纳米CaCO3复合材料的流变行为,讨论了复合材料的组成、剪切应力和剪切速率及温度对熔体流变行为、熔体黏度的影响,测定了不同配比的复合材料熔体的非牛顿指数 n。结果表明,PTT/纳米CaCO3复合材料熔体为假塑性流体,表观黏度随着剪切速率增加而降低。纳米CaCO3的加入量较少(1%)时,熔体黏度较纯PTT迅速下降;随着纳米CaCO3含量增加(2%-20%),熔体黏度随之上升,但都小于纯PTT的;直到含量为30%时,熔体黏度才超过纯PTT的。差示扫描量热仪测定复合材料的结晶和熔融性能发现,复合材料的熔体结晶温度Tpc和熔融温度Tm较纯PTT、都有所升高,说明纳米CaCO3的加入对PTT的结晶起到了异相成核作用。  相似文献   

6.
研究了线性双峰聚乙烯(LBPE)与低密度聚乙烯(LDPE)共混物溶体的流变行为,讨论了共混物的组成,剪切应力和剪切速率以及温度对熔体流变行为,熔体粘度的影响,测定了不同配比熔体的非牛顿指数(n),熔体流动速率(MFR)及力学性能,为双峰聚乙烯的加工和使用提供了理论依据。  相似文献   

7.
ABS/纳米CaCO3复合材料流变性能的研究   总被引:1,自引:0,他引:1  
采用双螺杆挤出机,通过熔融共混工艺制备了丙烯腈-丁二烯-苯乙烯共聚物/纳米碳酸钙(ABS/nano-CaCO3)复合材料,利用转矩流变仪研究了其流变行为,探讨了nano-CaCO3用量、剪切速率和温度对复合材料黏度的影响。实验数据显示:ABS/nano-CaCO3熔体为假塑性流体,非牛顿指数n〈1;适量加入nano-CaCO3使复合体系熔体的n值增加,“柱塞流动”现象降低;在低剪切速率下,ABS/nano-CaCO3复合体系的熔体黏度较纯ABS熔体低;在高剪切速率下,复合体系的熔体黏度较纯ABS熔体高。  相似文献   

8.
钟明强  章君 《塑料工业》2007,35(B06):155-157
研究了HDPE/PC/增容剂/蒙脱土共混复合体系的力学性能和熔体的流变性能。结果表明,加入适量的增容剂和蒙脱土对HDPE/PC复合材料力学性能有一定的提高。在所研究的剪切应力、剪切速率、温度及组成范围内,该复合材料的lgη-lgγ曲线都偏离牛顿流体曲线,为非牛顿假塑性流体。经过有机化处理的蒙脱土复合材料体系比未经有机化处理的蒙脱土复合材料体系有更好的流动性和力学性能。  相似文献   

9.
制备了MMT/MgCl2/TiCl4插层催化剂,并通过原位聚合的方法制得聚丙烯/蒙脱土纳米复合材料。测试了聚丙烯/蒙脱土复合材料在不同温度及不同蒙脱土含量下的流变性能。结果表明:不同蒙脱土含量的聚丙烯复合材料,其表观黏度随剪切速率的增大而减小,剪切应力随剪切速率的增大而增大。符合流体切变稀释的性质,该性质有利于复合材料的成型加工。  相似文献   

10.
本文研究了 BR 含量不同的 HDPE/BR/LLDPE 共混体系熔体的流动曲线,表观粘度与温度、组成的关系,流动指数与剪切应力的关系等流变特性。结果表明,在所研究的剪切应力、剪切速率、温度及组成范围内,该共混体系熔体属于假塑性流体,表现粘度与温度的关系符合阿累尼乌斯型方程,与组成的关系不满足对数加和规律,当 BR 含量为20%和25%时,表观粘度分别出现极小位和极大值,不同温度、不同剪切应力时表观粘度与组成的关系有大体相同的规律,随着剪切应力的提高,流动指数减小;BR 在较高温度下的交联,未对该共混体系的流变行为产生明显影响。  相似文献   

11.
对定向碳纳米管进行酸化处理以后,采用机械共混法制备了定向碳纳米管/高密度聚乙烯复合材料,利用毛细管流变仪研究了高密度聚乙烯和定向碳纳米管/高密度聚乙烯复合材料的流变行为.讨论了剪切应力、剪切速率、温度以及定向碳纳米管的加入对体系流变行为的影响。结果表明:高密度聚乙烯和定向碳纳米管/高密度聚乙烯复合材料都属于假塑性流体.高密度聚乙烯的非牛顿性要大于定向碳纳米管/高密度聚乙烯复合材料;随剪切速率和剪切应力的增大及温度的升高.熔体表现粘度均减小;随着定向碳纳米管含量的增加,定向碳纳米管/高密度聚乙烯复合材料的表观粘度先减小后增大。  相似文献   

12.
HDPE/OMMT纳米复合材料挤出胀大比的影响因素研究   总被引:2,自引:1,他引:1  
利用流变分析仪研究了高密度聚乙烯(HDPE)/有机蒙脱土(OMMT)纳米复合材料在挤出过程中的挤出胀大行为及其影响因素,深入讨论了剪切应力、剪切速率、口模温度、口模长径比及OMMT用量对HDPE/OMMT纳米复合材料挤出胀大比B的影响.结果表明,B值随着剪切应力或剪切速率的增加而增大,并且与剪切应力近似呈线性关系;随着口模温度的升高或长径比的增加而减小,当口模长径比较小时,B值受剪切应力或剪切速率的影响尤为显著;同时B值随OMMT用量的增加而逐渐减小.  相似文献   

13.
采用单管毛细管流变仪,在不同温度下对高等级高密度聚乙烯(HDPE)管材树脂的熔体流动行为进行了研究,考察了剪切应力(τ<,w>)、剪切速率(γ)、挤出胀大及温度之间的关系.结果表明,高等级HDPE管材树脂熔体的剪切流动基本上服从幂律定律;熔体的表观黏度(η<,a>)对温度的依赖性大致上符合Arrhenius方程;η<,a>随τ<,w>和γ的增加而非线性减小;挤出胀大比随温度的升高而下降,随γ的增加呈非线性增大.  相似文献   

14.
抗滴落阻燃聚丙烯动态粘弹性能及其纺丝温度研究   总被引:1,自引:1,他引:0  
在聚丙烯/蒙脱土(PP/MMT)纳米复合材料的基础上添加受阻胺型阻燃剂制备抗滴落阻燃聚丙烯切片并纺丝。动态粘弹性测试表明,加入质量分数为1%的阻燃剂就极大的增加PP/MMT纳米复合材料在低频下的储能模量,抗滴落阻燃聚丙烯的类固态流体行为更加明显。随着蒙脱土含量的增加,抗滴落阻燃聚丙烯纤维内部的网络结构逐渐完善,对纺丝温度的影响也逐渐加大,需要适当降低纺丝温度,以适应网络结构,达到可纺性要求。  相似文献   

15.
以4,4′-二氨基二苯砜(DDS)为固化剂,制备出一种剥离型MMT/EP(蒙脱土/环氧树脂)纳米复合材料。采用红外光谱(FT-IR)法、X射线衍射(XRD)法和动态力学分析(DMA)法等对复合材料的微观结构、插层剥离行为、热性能和力学性能等进行了研究。结果表明:MMT对EP分子结构无影响,有利于EP结构和性能的设计,也便于确定其固化工艺。在无促进剂的情况下,当体系中引入5%MMT(相对于EP质量而言)时,复合材料的干态热变形温度、玻璃化转变温度(Tg)、冲击强度和拉伸强度分别提高了39℃、21℃、27.30%和10.50%;适量的MMT能有效提高纳米复合材料的耐湿热性能。  相似文献   

16.
用毛细管流变仪对以马来酸酐接枝聚丙烯(PP-g-MAH)为相容剂的聚丙烯/高密度聚乙烯(PP/HDPE)共混体系的流变性能进行研究。研究发现,PP/HDPE共混体系属于假塑性流体;随着剪切速率的增加,表观黏度下降;PP-g-MAH的加入降低了共混体系的表观黏度;HDPE与PP的非牛顿指数在低剪切速率区与适宜温度下适用于幂律方程的经验公式;HDPE与PP共混后,HDPE含量越低,体系出现壁面滑移的临界剪切速率越高,可加工性能越好。  相似文献   

17.
利用原位聚合法制备了酚醛树脂/蒙脱土(PF/MMT)纳米复合材料,通过对其力学性能和电学性能的研究发现,当MMT含量为5 %(质量分数,下同)时,复合材料的综合性能最好,拉伸强度是未改性PF的2.33倍,体积电阻率提高了4个数量级,热失重速率最大时所对应的温度提高了15.24 ℃,线烧蚀率为未改性PF的80 %。并通过扫描电子显微镜对复合材料烧蚀面的观察,建立了耐烧蚀复合材料的烧蚀模型。  相似文献   

18.
以蒙脱土(MMT)作为EP(环氧树脂)的改性剂制备EP/MMT纳米复合材料。考察了MMT含量对EP/MMT体系的凝胶时间、黏度和力学性能等影响。结果表明:MMT的加入明显缩短了EP体系的凝胶时间,并显著缩短了EP体系达到高黏度的时间;当w(MMT)=4%时,EP/MMT纳米复合材料的力学性能相对最好,其浇铸体的拉伸强度、弯曲强度和冲击强度分别为85 MPa、140 MPa和35 kJ/m2,其复合材料的拉伸强度和弯曲强度分别为160 MPa和200 MPa。  相似文献   

19.
The effect that polymer molecular weight has on the dispersion of relatively polar montmorillonite (MMT) in nonpolar, unmodified high density polyethylene (HDPE) was examined. Polymer layered silicate (PLS) nanocomposites were prepared via melt compounding in a single screw extruder using three unmodified HDPE matrices of differing molecular weight and organically modified MMT (organoclay) in concentrations ranging from 2 to 8 wt%. The weight average molecular weights (M W) of the HDPE matrices used ranged from 87,000 to 460,000 g/mol. X‐ray diffraction (XRD), tensile testing, dynamic mechanical thermal analysis (DMTA), and dynamic rheometry were performed on these nanocomposites. Nanocomposites generated from the high molecular weight (HMW) HDPE matrix exhibited increased intercalation of the MMT as shown by XRD and greater improvements in the Young's modulus when compared with nanocomposites generated from the low (LMW) and middle molecular weight (MMW) matrices. DMTA measurements carried out in torsion showed that the increase in shear modulus of the HMW nanocomposites was not as great as that of the LMW and MMW counterparts as observed from a lower percentage enhancement in the storage modulus (G′) and estimated heat distortion temperature (HDT). This was attributed to the higher degree of mechanical anisotropy in the HMW nanocomposites. POLYM. COMPOS., 28:499–511, 2007. © 2007 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号