首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 46 毫秒
1.
零电压开关PWM复合式全桥三电平变换器   总被引:7,自引:14,他引:7  
该文提出一种零电压开关复合式PWM全桥三电平变换器,其中一个桥臂为三电平桥臂,另一个桥臂为两电平桥臂。三电平桥臂的开关管的电压应力为输入电压的一半,可在宽负载范围内实现零电压开关;两电平桥臂的开关管的电压应力为输入电压,它们利用变压器的漏感来实现零电压开关;该变换器的输出整流电压交流分量很小,可以减小输出滤波器,改善变换器的动态特性;其输入电流脉动很小,可以减小输入滤波器。该文详细分析该变换器的工作原理,讨论参数设计,并且给出实验结果。  相似文献   

2.
阮新波  李斌 《电源学报》2002,1(3):204-210
本文提出一种零电压零电流开关PWM复合式全桥三电平变换器,该变换器的一个桥臂为三电平桥臂,其开关管的电压应力为输入电压的一半,可在很宽的负载范围内实现零电压开关,可以选用MOSFET;另一个桥臂为两电平桥臂,其开关管电压应力为输入电压,可在很宽的负载范围内实现零电流开关,可以选用IGBT。该变换器的输出整流电压交流分量很小,可以减小输出滤波器,改善变换器的动态特性。其输入电流脉动很小,可以减小输入滤波器。本文详细分析该变换器的工作原理,讨论参数设计,并且给出实验结果。本文还提出了其他几种零电压零电流开关PWM复合式全桥三电平变换器。  相似文献   

3.
零电压开关PWM全桥三电平变换器   总被引:2,自引:5,他引:2  
该文针对全桥三电平变换器提出了一种新的控制一一斩波加移相控制,引入了飞跨电容和钳位二极管,使全桥三电平变换器可以工作在三电平模式和两电平模式,同时实现所有开关管的零电压开关,从而使变换器适应宽范围输入电压的要求,并保持较高的变换效率。由于开关管的电压应力只有输入电压的一半,使该变换器非常适合高压输入的场合。此外,全桥三电平变换器输出滤波电感比传统全桥变换器大大减小,副边整流一极管的电压应力得到了降低。由于变换器的输入电流纹波很小,输入滤波器也得到了减小。该文详细分析全桥三电平变换器在该控制策略下的工作原理,讨论参数设计,并且给出实验结果。  相似文献   

4.
零电压开关PWM复合式全桥三电平变换器(ZVSPWM H-FB TL变换器)利用变压器的漏感和开关管的结电容可以实现开关管的ZVS,但是输出整流管仍然存在反向恢复带来的尖峰电压.为了解决这个问题,该文提出一种新的ZVS PWM H-FB TL变换器,它在基本的ZVS PWM H-FBTL变换器中增加两个二极管,能够有效地消除在3L模式和2L模式下输出整流管的尖峰电压,同时保留基本ZVS PWMH-FB TL变换器的所有优点.该文分析这种新的变换器的工作原理,并在一个1200W的原理样机上进行验证,最后给出实验结果.  相似文献   

5.
文本通过分析全桥ZVZCS PWM变换器的工作原理,得出其与传统的全桥ZVZCS PWM变换器的不同之处,然后具体分析对于变化的负载电流,电路环流是如何自我调节以实现ZCS的,并给出了一些影响实现ZVZCS的关键元器件的参数设计公式。最后样机的试验波形证了本文的分析研究。  相似文献   

6.
陈武  阮新波 《电源学报》2005,3(4):275-280
本文提出一种倍流整流方式ZVS PWM复合式全桥三电平变换器,它可以在很宽负载范围内实现所有开关管的ZVS和输出整流管的自然换流,从而有效地消除输出整流管上的电压尖峰和振荡。该变换器还有利于减小输出滤波电感纹波电流和输出纹波电流,适用于宽输入电压范围场合。本文阐述该变换器的工作原理,并通过一台540W的原理样机验证该变换器的工作原理,最后给出实验结果。  相似文献   

7.
一种新型的全桥零电压零电流开关PWM变换器   总被引:22,自引:19,他引:22  
提出一种新型的FB-ZVZCS—PWM变换器拓扑,采用耦合电感构成辅助电路,结构简单、没有耗能元件或有源开关,不增加原边电流应力。新拓扑具有良好的通用性,对采用不同箝位方式如阻容吸收、次级无源箝位或有源箝位的全桥变换器均适用。变换器主开关管全部采用IGBT,开关频率大幅提高,功率密度、轻载效率及软开关负载范围显著改善,而变换器成本降低。给出了变换器拓扑结构、关键参数设计及实测波形,新拓扑已应用在3kW,350VDC变换器中。  相似文献   

8.
一种新颖的零电压零电流开关PWM三电平直流变换器   总被引:10,自引:1,他引:9  
提出一种新颖的零电压零电流开关PWM三电平直流变换器 ,它是在基本的三电平直流变换器的变压器一次侧串入一个阻断电容 ,使一次电流在零状态时减小到零。为了使一次电流在零状态时减小到零后不再反方向流动 ,在两个滞后管中分别串入一个二极管。该变换器可以实现超前管的零电压开关和滞后管的零电流开关。由于在零状态中一次电流为零 ,减小了通态损耗 ,因此可以提高变换效率。本文分析该变换器的工作原理 ,讨论它的参数设计 ,并给出实验结果  相似文献   

9.
改进型零电压开关PWM三电平直流变换器   总被引:5,自引:4,他引:5  
该文介绍了改进型零电压开关脉宽调制三电平直流变换器(ZVSPWMTL变换器),该变换器是将传统的ZVSPWMTL变换器的变压器和谐振电感位置互换,使得变压器与滞后管相连。改进后的变换器箝位二极管在一个周期中只导通一次,同时零状态谐振电感电流较小,有利于提高变换器的效率,占空比丢失也减小。该文详细分析了该变换器的工作原理。为了防止变压器直流磁化,一般在变换器中加入隔直电容,该文分析了隔直电容与变压器或谐振电感串联时对电路工作的影响,确定一种最佳方案,并通过实验验证理论分析的正确性。  相似文献   

10.
刘学超  潘虹  张波 《电力电子技术》2003,37(3):37-38,94
介绍了一种带输出饱和电感的移相零电压开关PWM三电平直流变换器,与传统的零电压三电平比较,它具有较宽负载范围内实现零电压软开关、减小次级占空比丢失、减小输出二极管的寄生振荡及电压尖峰等特点。实验样机表明,该电路整机效率高,易于实现中大功率DC/DC变换。  相似文献   

11.
全桥三电平变换器的一种新型控制策略   总被引:1,自引:1,他引:0  
对全桥三电平变换器提出了一种新的脉宽调制控制策略一双移相(Double phase—shift,DPS)控制。对比斩波加移相(Chopping plus phase—shift,CPS)控制,该控制策略大大减小开关管体二极管的损耗,使全桥三电平变换器可以工作在三电平模式和两电平模式,从而提高了变换器的效率。同时保持开关管的电压应力只有输入电压的一半,使该变换器非常适合高压输入的场合,并实现所有开关管的零电压开关。此外,全桥三电平变换器输出滤波电感比传统全桥变换器也大为减小。副边整流二极管的电压应力得到了降低。由于变换器的输入电流纹波很小,输入滤波器也得到了减小。本文详细分析全桥三电平变换器在双移相控制策略下的工作原理,讨论参数设计,并且给出实验结果。  相似文献   

12.
全桥三电平直流变换器的最佳开关方式   总被引:5,自引:6,他引:5  
该文提出了一种新的关于直流变换器三电平拓扑变换的分析方法。应用该方法得到了零电压开关全桥三电平直流变换器,同时提出了加入箝位二极管的改进型变换器。该变换器使用了以能量传输最大、滤波电感电流纹波最小、开关管实现软开关等为条件寻找到的最佳开关方式,克服了传统零电压开关全桥直流变换器中开关管电压应力高、滤波电感电流纹波大、整流二极管存在寄生振荡等缺点,所以其变换效率更高,响应速度更快,进一步拓宽了它的应用范围。最后通过一个开关频率为50kHz、额定输入电压为600V、输出功率为2.8kW的实验样机加以验证分析结果。  相似文献   

13.
一种新颖的ZCZVS PWM Boost全桥变换器   总被引:4,自引:11,他引:4  
提出一种新颖的零电流零电压开关:PWM Boost全桥变换器,超前管利用输出滤波电容的能量可以在很宽的负载范围内实现ZCS,滞后管可以在任何负载下实现ZVS。与ZCS PWM Boost全桥变换器相比,所提出的变换器没有电流占空比丢失的问题。该文详细分析该变换器的工作原理,参数设计原则,并通过一个480W的原理样机,验证分析结果。  相似文献   

14.
一种新颖的零电压开关PWM组合式三电平变换器   总被引:1,自引:5,他引:1  
该文提出一种新颖的零电压开关组合式直流三电平变换器,它实质上是由半桥三电平变换器和全桥变换器组合而成.该变换器所有开关管的电压应力均为输入电压的一半,特别适用于高压输入场合;其输出整流电压交流分量很小,可以大大减小输出滤波器的体积,提高变换器的动态性能;其输入电流脉动很小,可以减小输入滤波器;此外,该变换器可以在三电平和两电平两种模式下工作,输入整流二极管电压应力小,适合于宽范围输入电压场合.该文介绍了该变换器的工作原理及其特性,并给出实验结果.  相似文献   

15.
输入串联输出并联全桥变换器的均压均流的一种方法   总被引:6,自引:0,他引:6  
该文分析了输入串联输出并联的双全桥变换器输入不均压输出不均流的原因;提出了一种具有三个闭环的交错控制策略,均压环的输出分别校正两个电流内环的给定值,使输入电压高的模块输出电流变大,输入电压低的模块输出电流变小,从而实现该变换器输入电压均分和输出电流的均流;同时交错控制下的电流纹波抵消效应使输出滤波容得到了减小,论文最后给出了仿真和实验结果,以验证该方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号