首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jiyao X  Yingjian W 《Applied optics》1995,34(24):5453-5460
A new method for atmospheric remote sensing from the ground is described. The nonlinear deconvolution method and the reference effective instrument function are used to increase the spectral resolution. The nonlinear least-squares method is used to retrieve the atmospheric parameter profile. This method can increase the measurable altitude of remote sensing and improve the precision of atmospheric inversion.  相似文献   

2.
Remote sensing from space has become a common method for deriving geophysical parameters such as atmospheric temperature and composition. The Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) instrument was designed to sound the middle and the upper atmosphere (10-180 km) with high spatial resolution. Atmospheric IR emissions were measured with Si:Ga bulk or Si:As blocked impurity band detectors for a wavelength interval of 4-17 microm and Ge:Ga bulk detectors for 56-71 microm. An overview of the calibration of the instrument and the correction of detector signal relaxations for the Si:Ga detectors are given, both of which are necessary to provide high-quality IR radiance data as input for the retrieval of atmospheric temperature and trace gas mixing ratios. Laboratory and flight data are shown to demonstrate the quality of the results.  相似文献   

3.
太阳光谱仪的定标技术与渤海海域的光学测量   总被引:4,自引:0,他引:4  
本文以太阳光谱仪为基础介绍了根据仪器测量的电信号数据反演气溶胶光学厚度的基本原理以及依据Langley方法的定标技术。通过两次测量试验对比,提出了一种比较实用的仪器定标方法,即在海洋上空对仪器进行定标并且取得了满意的结果。利用该仪器于2003年8月对渤海海域上空的大气光学特性进行了大面积调查,分析了当时海域上空各种大气参数(气溶胶光学厚度、臭氧浓度以及水汽含量等)的空间分布情况,为我国近海海域二类水体水色遥感反演中大气校正模式的建立提供了必要的数据参考。  相似文献   

4.
This report addresses the task of calibrating an optical sensor for oxygen determination. Detailed analyses of the functional dependences from our measurement system results have been carried out with the additional aim of temperature compensation. As a result, an empirical calibration function has been successfully derived for the luminescent quenching-based oxygen sensor included in a self-designed portable instrument. This function also compensates for the temperature influence on the quenching luminescence process in the range from 0 to 45 degrees C. Moreover, the calibration procedure is extremely simple because only a single standard is needed. In fact, the oxygen measurement system can be calibrated with exposure to an open air atmosphere, and therefore, neither laboratory standards nor trained personnel are required. The method has been applied to a set of 11 units of the mentioned sensor (up to 24% oxygen concentration) giving an overall deviation between our calibrated system results and the laboratory standards of 0.3% oxygen concentration (calculated with 95% confidence level). The proposed calibration function has shown itself to be applicable for different sensing film thicknesses and luminophore concentrations using the same fittings parameter. Additionally, this function has been successfully applied to other oxygen dyes. Good agreement has also been found when the performance of the instrument was compared to a commercially available portable instrument based on an electrochemical sensor. We believe that this work could be an interesting finding for spreading the use of optical sensors for atmospheric oxygen determination in commercial measurement equipment for different purposes in confined working atmospheres, such as mines, undergrounds, warehouses, vehicles, and ships.  相似文献   

5.
Belmonte A 《Applied optics》2006,45(27):7097-7103
The presence of atmospheric refractive turbulence makes it necessary to use simulations of beam propagation to examine the uncertainty added to the differential absorption lidar (DIAL) measurement process of a practical heterodyne lidar. The inherent statistic uncertainty of coherent return fluctuations in ground lidar systems profiling the atmosphere along slant paths with large elevation angles translates into a lessening of accuracy and sensitivity of any practical DIAL measurement. This technique opens the door to consider realistic, nonuniform atmospheric conditions for any DIAL instrument configuration.  相似文献   

6.
SCISAT-1, also known as the Atmospheric Chemistry Experiment, is a satellite mission for remote sensing of the Earth's atmosphere, launched on 12 August 2003. The primary instrument on the satellite is a 0.02 cm(-1) resolution Fourier-transform spectrometer operating in the mid-IR (750-4400 cm(-1)). We describe the approach developed for the retrieval of atmospheric temperature and pressure from the troposphere to the lower thermosphere as well as the strategy for the retrievals of volume-mixing ratio profiles of atmospheric species.  相似文献   

7.
Wheeler DJ  Schmidt JD 《Applied optics》2011,50(21):3907-3917
We introduce a new method of estimating the coherence function of a Gaussian-Schell model beam in the inertial subrange of atmospheric turbulence. It is compared with the previously published methods based on either the quadratic approximation of the parabolic equation or an assumed independence between the source's randomness and the atmosphere using effective beam parameters. This new method, which combines the results of the previous two methods to account for any random source/atmospheric coupling, was shown to more accurately estimate both the coherence radius and coherence functional shape across much of the relevant parameter space. The regions of the parameter space where one method or another is the most accurate in estimating the coherence radius are identified along with the maximum absolute estimation error in each region. By selecting the appropriate estimation method for a given set of conditions, the absolute estimation error can generally be kept to less than 5%, with a maximum error of 7%. We also show that the true coherence function is more Gaussian than expected, with the exponential power tending toward 9/5 rather than the theoretical value of 5/3 in very strong turbulence regardless of the nature of the source coherence.  相似文献   

8.
The balloonborne instrument AMON (which is a French acronym for Absorption par les Minoritaires Ozone et NO(x)) has been modified to record chromatic scintillation during stellar occultation by the Earth's atmosphere. A 14-channel spectrophotometer with a sampling rate of 10 Hz was added, and the modified instrument, AMON-RA, performed successful measurements of the setting star Alnilam during the third European Stratospheric Experiment on Ozone (THESEO) project. Unambiguous records of the chromatic scintillation were obtained, to our knowledge for the first time from above the atmosphere, and some of its basic properties are reported. The properties of atmospheric structures that are responsible for this chromatic scintillation were found to be consistent with those of previous monochromatic measurements performed from space. A maximum chromatic delay of 2.5 s was observed for widely different wavelengths.  相似文献   

9.
Aben I  Tanzi CP  Hartmann W  Stam DM  Stammes P 《Applied optics》2003,42(18):3610-3619
A method is presented for in-flight validation of space-based polarization measurements based on approximation of the direction of polarization of scattered sunlight by the Rayleigh single-scattering value. This approximation is verified by simulations of radiative transfer calculations for various atmospheric conditions. The simulations show locations along an orbit where the scattering geometries are such that the intensities of the parallel and orthogonal polarization components of the light are equal, regardless of the observed atmosphere and surface. The method can be applied to any space-based instrument that measures the polarization of reflected solar light. We successfully applied the method to validate the Global Ozone Monitoring Experiment (GOME) polarization measurements. The error in the GOME's three broadband polarization measurements appears to be approximately 1%.  相似文献   

10.
Simple analytical methods are proposed for calculating the reflection function of a semi-infinite and conservative scattered layer, the value of which is needed to solve many atmospheric optics problems. The methods are based on approximations of the exact values obtained with a strict numerical method. For a Henyey-Greenstein phase function, knowledge of the zeroth and sixth higher harmonics appears to be sufficient for a quite accurate approximation of the angle range, which is acceptable for solution of direct and inverse problems in atmospheric optics when a plane atmosphere is assumed. An error estimation and a comparison with the exact solution are presented.  相似文献   

11.
A novel instrument has been designed to measure the nighttime atmospheric water vapor column abundance by near-infrared absorption spectrophotometry of the Moon. The instrument provides a simple, effective, portable, and inexpensive means of rapidly measuring the water vapor content along the lunar line of sight. Moreover, the instrument is relatively insensitive to the atmospheric model used and, thus, serves to provide an independent calibration for other measures of precipitable water vapor from both ground- and space-based platforms.  相似文献   

12.
Lenoble J 《Applied optics》1998,37(12):2441-2447
The amplification of UV irradiance at the Earth's surface that is due to successive reflections between the snow-covered ground and the scattering atmosphere is analyzed by a method based on decoupling the atmosphere and the surface functions. For a uniform Lambertian surface the amplification factor for the global irradiance depends only on the product of the surface reflectance and the atmospheric backscatter. It varies with wavelength, reaching a maximum near 320 nm; this maximum is close to 50% for clean snow. In UV-B the amplification depends strongly on tropospheric ozone. For non-Lambertian, nonuniform surfaces it is possible, by the same method, to define effective or average reflectances.  相似文献   

13.
A hand-held, battery-powered Fourier transform infrared spectroradiometer weighing 12.5 kg has been developed for the field measurement of spectral radiance from the Earth's surface and atmosphere in the 3-5-μm and 8-14-μm atmospheric windows, with a 6-cm(-1) spectral resolution. Other versions of this instrument measure spectral radiance between 0.4 and 20 μm, using different optical materials and detectors, with maximum spectral resolutions of 1 cm(-1). The instrument tested here has a measured noise-equivalent delta T of 0.01 °C, and it measures surface emissivities, in the field, with an accuracy of 0.02 or better in the 8-14-μm window (depending on atmospheric conditions), and within 0.04 in accessible regions of the 3-5-μm window. The unique, patented design of the interferometer has permitted operation in weather ranging from 0 to 45 °C and 0 to 100% relative humidity, and in vibration-intensive environments such as moving helicopters. The instrument has made field measurements of radiance and emissivity for 3 yr without loss of optical alignment. We describe the design of the instrument and discuss methods used to calibrate spectral radiance and calculate spectral emissivity from radiance measurements. Examples of emissivity spectra are shown for both the 3-5-μm and 8-14-μm atmospheric windows.  相似文献   

14.
An application of the Green's function method to the one-dimensional radiative transfer problem with a non-Lambertian surface is described. This method separates atmospheric radiative transport from the lower boundary condition and allows expressing a solution analytically for an arbitrary surface reflectance. In the physical sense, the Green's function represents bidirectional atmospheric transmission for the unitary radiance source located at the bottom of the atmosphere. The boundary-value problem for the Green's function is adjoint to the problem for atmospheric path radiance, and therefore it can be solved by use of existing numerical methods by reversal of the direction of light propagation. From an analysis of an exact operator solution and extensive numerical study, we found two accelerating parameterizations for computing the surface-reflected radiance. The first one is a maximum-eigenvalue method that is comparable in accuracy with rigorous radiative transfer codes in calculations with realistic land-cover types. It requires a total of the first three orders of the surface-reflected radiance. The second one is based on the Lambertian approximation of multiple reflections. Designed for operational applications, it is much faster: Already the first-order reflected radiance ensures an average accuracy of better than 1%.  相似文献   

15.
Müller T  Müller D  Dubois R 《Applied optics》2005,44(9):1657-1666
We describe an instrument for measuring the particle extinction coefficient at ambient conditions in the spectral range from 270 to 1000 nm. It is based on a differential optical absorption spectroscopy (DOAS) system, which was originally used for measuring trace-gas concentrations of atmospheric absorbers in the ultraviolet-visible wavelength range. One obtains the particle extinction spectrum by measuring the total atmospheric extinction and subtracting trace-gas absorption and Rayleigh scattering. The instrument consists of two nested Newton-type telescopes, which are simultaneously used for emitting and detecting light, and two arrays of retroreflectors at the ends of the two light paths. The design of this new instrument solves crucial problems usually encountered in the design of such instruments. The telescope is actively repositioned during the measurement cycle. Particle extinction is simultaneously measured at several wavelengths by the use of two grating spectrometers. Optical turbulence causes lateral movement of the spot of light in the receiver telescope. Monitoring of the return signals with a diode permits correction for this effect. Phase-sensitive detection efficiently suppresses background signals from the atmosphere as well as from the instrument itself. The performance of the instrument was tested during a measurement period of 3 months from January to March 2000. The instrument ran without significant interruption during that period. A mean accuracy of 0.032 km(-1) was found for the extinction coefficient for an 11-day period in March.  相似文献   

16.
Propagation properties of astigmatic sinh-Gaussian beams (ShGBs) with small beam width in turbulent atmosphere are investigated. Based on the extended Huygens–Fresnel integral, analytical formulae for the average intensity and the effective beam size of an astigmatic ShGB are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of an astigmatic ShGB propagating in turbulent atmosphere are numerically demonstrated. The influences of the beam parameters and the structure constant of atmospheric turbulence on the propagation properties of astigmatic ShGBs are also discussed in detail. In particular, for sufficiently small beam width and sinh-part parameter as well as suitable astigmatism, we show that the average intensity pattern converts into a perfect dark-hollow profile from initial two-petal pattern when ShGBs with astigmatic aberration propagate through atmospheric turbulence.  相似文献   

17.
Existing solar radiative codes such as lowtran allow us to model the radiative properties of the atmosphere and its constituents for standard atmospheric conditions. The increase in urbanization and air pollution has led to changes in the distribution, type, and concentration of the atmospheric constituents, affecting spectral atmospheric transmission and modifying weather and climate. This requires knowledge of the real optical properties of atmospheric transmission. We have developed a model for the radiative properties of atmospheric transmission, with ground-based multispectral measurements of direct solar radiation in the 310-830-nm range. An application of this model to Athens' urban atmosphere is described. The radiative properties of a U.S. Standard Atmosphere are also simulated by use of the lowtran 7 code; simulations and calculations are compared. The total ozone retrieval scheme and the algorithm for retrieving the spectral transmission function and optical thickness, considering multiple scattering, are given. Results for the spectral atmospheric transmission and aerosol and gas transmission functions as well as optical-thickness measurements for the Athens area are also presented as an application of the proposed methodology.  相似文献   

18.
Zhai PW  Kattawar GW  Yang P 《Applied optics》2008,47(8):1063-1071
A hybrid method is developed to solve the vector radiative transfer equation (VRTE) in a three-dimensional atmosphere-ocean system (AOS). The system is divided into three parts: the atmosphere, the dielectric interface, and the ocean. The Monte Carlo method is employed to calculate the impulse response functions (Green functions) for the atmosphere and ocean. The impulse response function of the dielectric interface is calculated by the Fresnel formulas. The matrix operator method is then used to couple these impulse response functions to obtain the vector radiation field for the AOS. The primary advantage of this hybrid method is that it solves the VRTE efficiently in an AOS with different dielectric interfaces while keeping the same atmospheric and oceanic conditions. For the first time, we present the downward radiance field in an ocean with a sinusoidal ocean wave.  相似文献   

19.
20.
For adaptive optical systems to compensate for atmospheric turbulence effects, the wave-front perturbation must be measured with a wave-front sensor (WFS) and corrected with a deformable mirror. One limitation in this process is the time delay between the measurement of the aberrated wave front and implementation of the proper correction. Statistical techniques exist for predicting the atmospheric aberrations at the time of correction based on the present and past measured wave fronts. However, for the statistical techniques to be effective, key parameters of the atmosphere and the adaptive optical system must be known. These parameters include the Fried coherence length r(0), the atmospheric wind-speed profile, and the WFS slope measurement error. Neural networks provide nonlinear solutions to adaptive optical problems while offering the possibility to function under changing seeing conditions without actual knowledge of the current state of the key parameters. We address the use of neural networks for WFS slope measurement prediction with only the noisy WFS measurements as inputs. Where appropriate, we compare with classical statistical-based methods to determine if neural networks offer true benefits in performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号