首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromium removal from electroplating wastewater by coir pith   总被引:3,自引:0,他引:3  
Coir pith is a by-product from padding used in mattress factories. It contains a high amount of lignin. Therefore, this study investigated the use of coir pith in the removal of hexavalent chromium from electroplating wastewater by varying the parameters, such as the system pH, contact time, adsorbent dosage, and temperature. The maximum removal (99.99%) was obtained at 2% (w/v) dosage, particle size <75microm, at initial Cr(VI) 1647mgl(-1), system pH 2, and an equilibrium time of 18h. The adsorption isotherm of coir pith fitted reasonably well with the Langmuir model. The maximum Cr(VI) adsorption capacity of coir pith at 15, 30, 45 and 60 degrees C was 138.04, 197.23, 262.89 and 317.65mgCr(VI)g(-1) coir pith, respectively. Thermodynamic parameters indicated an endothermic process and the adsorption process was favored at high temperature. Desorption studies of Cr(VI) on coir pith and X-ray absorption near edge structure (XANES) suggested that most of the chromium bound on the coir pith was in Cr(III) form due to the fact that the toxic Cr(VI) adsorbed on the coir pith by electrostatic attraction was easily reduced to less toxic Cr(III). Fourier transform infrared (FT-IR) spectrometry analysis indicated that the carbonyl (CO) groups and methoxy (O-CH(3)) groups from the lignin structure in coir pith may be involved in the mechanism of chromium adsorption. The reduced Cr(III) on the coir pith surface may be bound with CO groups and O-CH(3) groups through coordinate covalent bonding in which a lone pair of electrons in the oxygen atoms of the methoxy and carbonyl groups can be donated to form a shared bond with Cr(III).  相似文献   

2.
Iron impregnated coir pith (CP-Fe-I) can be effectively used for the removal of phosphate from aqueous streams and sewage. Iron impregnation on natural coir pith was carried out by drop by drop addition method. The effect of various factors such as pH, initial concentration of phosphate, contact time and adsorbent dose on phosphate adsorption was studied by batch technique. The pH at 3.0 favored the maximum adsorption of phosphate from aqueous solutions. The effect of pH on phosphate adsorption was explained by pH(zpc), phosphate speciation in solution and affinity of anions towards the adsorbent sites. A comparative study of the adsorption of phosphate using CP-Fe-I and CP (coir pith) was made and results show that the former one is five to six times more effective than the latter. Kinetic studies revealed that the adsorption process followed a pseudo-second order kinetic model. Adsorption followed Langmuir isotherm model. Column studies were conducted to examine the utility of the investigated adsorbent for the removal of phosphate from continuously flowing aqueous solutions.  相似文献   

3.
Coir pith is one of the most abundant agro waste found in the southern coastal regions of India, where the economy and livehood of people are largely dependent on the coconut industry. Many technologies have been developed successfully for the alternate use of coir pith. However the application of coir pith as fillers in polymer composite is limited. The major drawback of coir pith as filler in polymer is its low adhesion with the matrix and high water sorption and retention behavior. The present work is a part of research work carried out in our laboratory to modify the morphology and chemical properties of pith to make it better filler in the processing of polymer composites. Coir pith was subjected to mercerization followed by different types of chemical treatment. The products were analyzed in detail using FTIR, XRD, optical microscope, AFM and SEM. The chemical treatment resulted in increased density, thermal stability and reduced water retention behavior.  相似文献   

4.
The coir pith epoxy composites were hybridized with nylon fabric/epoxy resin by hand lay up technique followed by compression moulding. A set of composites of same composition having chemically treated coir pith was also prepared. Mechanical properties of composites such as tensile strength, flexural strength, impact strength and hardness were evaluated. Though coir pith acts as a good reinforcement in epoxy resin, the incorporation of nylon fabric and the chemical treatment of coir pith were found to enhance the properties of the composites further. Chemical resistance and flame resistance of composite systems were also found to be improved with hybrid composites. Since water uptake and retentions property of coir pith is a major drawback when it comes to its application in composites, the ageing of composite panels in moist environment was investigated. The results suggested that the presence of nylon fabric and chemically treated pith can contribute to longer durability of the panels in moist conditions.  相似文献   

5.
The removal of Cr(VI) from electroplating wastewater by coir pith was investigated in a fixed-bed column. The experiments were conducted to study the effect of important parameters such as bed depth (40-60cm) and flow rate (10-30ml min(-1)). At 0.05 C(t)/C(0), the breakthrough volume increased as flow rate decreased or a bed depth increased due to an increase in empty bed contact time (EBCT). The bed depth service time model (BDST) fit well with the experimental data in the initial region of the breakthrough curve, while the simulation of the whole curve using non-linear regression analysis was effective using the Thomas model. The adsorption capacity estimated from the BDST model was reduced with increasing flow rate, which was 16.40mg cm(-3) or 137.91mg Cr(VI)g(-1) coir pith for the flow rates of 10ml min(-1) and 14.05mg cm(-3) or 118.20mg Cr(VI)g(-1) coir pith for the flow rates of 30ml min(-1). At the highest bed depth (60cm) and the lowest flow rate (10mlmin(-1)), the maximum adsorption reached 201.47mg Cr(VI)g(-1) adsorbent according to the Thomas model. The column was regenerated by eluting chromium using 2M HNO(3) after adsorption studies. The desorption of Cr(III) in each of three cycles was about 67-70%. The desorption of Cr(III) in each cycle did not reach 100% due to the fact that Cr(V) was present through the reduction of Cr(VI), and was still in coir pith, possibly bound to glucose in the cellulose part of coir pith. Therefore, the Cr(V) complex cannot be desorbed in solution. The evidence of Cr(V) signal was observed in coir pith, alpha-cellulose and holocellulose extracted from coir pith using electron spin resonance (ESR).  相似文献   

6.
Adsorption of 2-chlorophenol (2-CP) by coir pith carbon was carried out by varying the parameters such as agitation time, 2-CP concentration, adsorbent dose, pH and temperature. Adsorption equilibrium reached at 40, 60, 80 and 100 min for 2-CP concentration of 10, 20, 30 and 40 mg/l, respectively. Adsorption followed second-order kinetics. The adsorption equilibrium data obeyed Freundlich isotherm. Acidic pH was favorable for the adsorption of 2-CP. Desorption studies showed that chemisorption plays a major role in the adsorption process.  相似文献   

7.
The oxidation state of chromium in coir pith after Cr(VI) adsorption from aqueous solution was investigated using electron spin resonance (ESR). To elucidate the mechanism of chromium adsorption on coir pith, the adsorption studies of Cr(VI) onto lignin, alpha-cellulose and holocellulose extracted from coir pith were also studied. ESR signals of Cr(V) and Cr(III) were observed in coir pith adsorbed Cr(VI) at solution pH 2, while ESR spectra of lignin extracted from coir pith revealed only the Cr(III) signal. In addition, ESR signal of Cr(V) was observed in alpha-cellulose and holocellulose extracted from coir pith adsorbed Cr(VI). These results confirmed that lignin in coir pith reduced Cr(VI) to Cr(III) while alpha-cellulose and holocellulose extracted from coir pith reduced Cr(VI) to Cr(V). The Cr(V) signal exhibited in ESR of alpha-cellulose and holocellulose might be bound with glucose in cellulose part of coir pith. In addition, xylose which is main in pentosan part of coir pith, indicated that it is involved in form complex with Cr(V) on coir pith. The adsorption kinetic of Cr(VI) from aqueous solution on coir pith was also investigated and described well with pseudo second order model. ESR and desorption experiments confirmed that Cr(VI), Cr(V) and Cr(III), exist in coir pith after Cr(VI) adsorption. The desorption data indicated that the percentage of Cr(VI), Cr(V) and Cr(III) in coir pith were 15.63%, 12.89% and 71.48%, respectively.  相似文献   

8.
A new adsorbent (PGCP-COOH) having carboxylate functional group at the chain end was synthesized by grafting poly(hydroxyethylmethacrylate) onto coconut coir pith, CP (a coir industry-based lignocellulosic residue), using potassium peroxydisulphate as an initiator and in the presence of N,N'-methylenebisacrylamide as a cross-linking agent. The adsorbent was characterized with the help of infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, and potentiometric titrations. The ability of PGCP-COOH to remove Hg(II) from aqueous solutions was assessed using batch adsorption technique under kinetic and equilibrium conditions. Adsorbent exhibits very high adsorption potential for Hg(II) and more than 99.0% removal was achieved in the pH range 5.5-8.0. Adsorption process was found to follow first-order-reversible kinetics. An increase of ionic strength of the medium caused a decrease in metal removal, indicating the occurrence of outer-sphere surface complex mechanism. The equilibrium data were fitted well by the Freundlich isotherm model (R(2)=0.99; chi(2)=1.81). The removal efficiency was tested using chlor-alkali industry wastewater. Adsorption isotherm experiments were also conducted for comparison using a commercial carboxylate-functionalized ion exchanger, Ceralite IRC-50. Regeneration experiments were tried for four cycles and results indicate a capacity loss of <9.0%.  相似文献   

9.
The possibility of adsorbing Pb(II) from solution using coir, a cheap lignocellulosic fibre, was assessed in a fixed bed column. The coir fibres were also chemically modified by covalent loading of a reactive dye, C.I. Reactive Orange 13, and used as adsorbent. Column adsorption studies were carried out at different initial Pb(II) concentrations and it was observed that the breakthrough time decreased with increase in the initial Pb(II) concentration. The column packed with dye loaded coir fibres was operated for longer duration than the one packed with unmodified coir fibres. The total Pb(II) adsorbed was also higher in a column packed with dye loaded coir fibres. The desorption level in the fixed bed column packed with coir fibres was of the order of 85%, whereas the one packed with dye loaded coir fibres was more than 90%. Both the columns were regenerated and used upto five cycles.  相似文献   

10.
The various toxic contaminants such as dyes, heavy metals, pesticides, rare‐earth elements, and hazardous chemicals are the major threats to all the flora and fauna. Owing to the harmful ill effects caused by the toxic contaminants, it is necessary to eliminate these compounds from the authors’ ecosystem. The chitosan magnetic nanomaterials (CMNPs) are one of the superior materials used in the wastewater treatment through various conventional technologies. The chitosan is a natural source obtained from the crustacean shells of crabs, prawns etc. The magnetic nanomaterial prepared by the reinforcement of chitosan is highly effective in the removal of heavy metals, dyes, organic matter, and harmful chemicals. It is used in various technologies such as adsorption, flocculation, immobilisation, photocatalytic technology, and bioremediation. This possesses unique surface and magnetic characteristics, Moreover, it is simple, economically feasible, and eco‐friendly material used efficiently in wastewater treatment. This review paper depicts the overview of CMNP in the industrial effluent treatment.Inspec keywords: effluents, adsorption, dyes, water pollution control, wastewater treatment, nanofabrication, nanoparticles, catalysis, industrial waste, photochemistry, flocculation, contamination, magnetic particlesOther keywords: CMNPs, water pollution control, toxic contaminants, dyes, heavy metals, pesticides, rare‐earth elements, hazardous chemicals, flora, fauna, chitosan magnetic nanomaterials, wastewater treatment, natural source, magnetic nanomaterial, organic matter, harmful chemicals, photocatalytic technology, magnetic characteristics, eco‐friendly material, industrial effluent treatment  相似文献   

11.
The effect of heavy metals on microbial respiration in organic materials used as soil amendments was evaluated to assess the stability of the materials. Solutions of Pb (II), Cu (II) and Zn (II) at rates of 5, 10 and 50mg metal g(-1) were added to green waste compost, peat, coir and wood bark. Metal toxicity led to a significant decrease in carbon dioxide evolved by the contaminated materials, up to 80% less at the highest rate of addition compared to the untreated material. There was a significant negative correlation between the organic carbon content of an amendment and the inhibition of CO(2) evolution by all three heavy metals. There was also a significant negative correlation between an amendment's cation exchange capacity and the inhibition of CO(2) evolution caused by Cu and Zn. The ability of the organic materials to enhance respiration in a soil from the vicinity of a Pb/Zn mine was also evaluated, by applying them to the soil at rates of 1, 10 and 20%. CO(2) evolution from the contaminated soil was enhanced significantly by the addition of all of the amendments, with coir causing up to 90% enhancement at high levels of addition.  相似文献   

12.
The fiber which serves as a reinforcement in reinforced plastics may be synthetic or natural. Past studies show that only artificial fibers such as glass, carbon etc., have been used in fiber-reinforced plastics. Although glass and other synthetic fiber-reinforced plastics possess high specific strength, their fields of application are very limited because of their inherent higher cost of production. In this connection, an investigation has been carried out to make use of coir, a natural fiber abundantly available in India. Natural fibers are not only strong and lightweight but also relatively very cheap. In the present work, coir composites are developed and their mechanical properties are evaluated. Scanning electron micrographs obtained from fractured surfaces were used for a qualitative evaluation of the interfacial properties of coir/epoxy and compared with glass fiber/epoxy. These results indicate that coir can be used as a potential reinforcing material for making low load bearing thermoplastic composites.  相似文献   

13.
The extensive discomfort in the expulsion of toxic pollutants even at mild concentrations has demanded the need for prompt methods for the evacuation of dyes and heavy metals. The effective method for depuration of dye from the effluent is by sorption. Chitosan is a bio‐polymer which is gaining an increasing interest as one of the sorbents. It was obtained from the crab shells by undergoing several chemical processes and used as an adsorbent for dye, metal removal and also for pharmaceutical purposes. Cross linking it with other co polymers will increase the capacity of adsorption to a maximum level. Fish scales are considered to be a major waste in the food industry and since it takes a long time for decomposing it is considered to be one of the pollutants. Hence it is utilised by converting it into activated carbon by preliminary treatment and into a muffle furnace. The obtained activated carbon is combined with chitosan by using a cross linker and utilised for adsorption mechanism. To analyse the effect of chitosan cross linked with activated carbon obtained from fish scales in adsorption of dye Reactive Blue 9 (RB9) to evaluate the adsorption studies, kinetics, mass transfer studies, thermodynamics of the bio adsorbent.Inspec keywords: dyes, wastewater treatment, effluents, mass transfer, activated carbon, adsorption, polymer blends, water pollution control, thermodynamics, reaction kinetics, furnaces, recycling, industrial waste, waste recovery, food processing industry, pharmaceutical industry, renewable materials, nanoparticles, toxicologyOther keywords: fish scales, activated carbon, reactive dye removal, toxic pollutants, heavy metals, bio‐polymer, nanochitosan, bio adsorbent, amalgamation, RB9 dye, industrial effluent, crab shells, adsorption method, pharmaceutical purposes, copolymers, food industry waste, waste recovery, recycling process, muffle furnace, reaction kinetics, mass transfer, thermodynamic analysis, ReactiveBlue 9, wastewater treatment, water pollution control, C  相似文献   

14.
The removal of heavy metals (e.g. Pb(II), Cd(II), Cu(II), etc.) and oxyanions (e.g. nitrate, As(III, V), Cr(VI), etc.) is of immense interest for treatment of groundwater and other dilute aqueous systems. However, the presence of non-toxic components, such as hardness (Ca, Mg) and sulfate, can interfere with the separation of toxic species. For example, pressure-driven membrane processes, such as reverse osmosis (RO), have been limited for water treatment due to problems that these extraneous components cause with water recovery and ionic strength (osmotic pressure) of the retentate. In addition, nitrate rejection by RO is considerably lower than NaCl rejection, resulting in permeate concentrations that may be too high for groundwater recharging. Other separation systems that rely solely on sorption of toxic species (e.g. ion exchange resins) may not have sufficient selectivity for efficient use in the presence of competing ions. Hence, implementation of pressure-driven membrane separations and high capacity sorbents in hybrid processes shows much promise for remedying these difficulties. For example, selective separation of nitrate may be achieved by combining nanofiltration (NF) for sulfate removal, followed by RO or ion exchange for nitrate removal (see example 1). When small concentrations of toxic metals are present, the large retentate volumes of RO processes may be reduced by selective removal of toxic species with a high capacity sorbent, thus permitting disposal of a lower volume, non-toxic stream (see example 2). The use of microfiltration membrane-based sorbents containing multiple polymeric functional groups is a novel technique to achieve high metal sorption capacity under convective flow conditions. These sorbents are formed by the attachment of various polyamino acids (MW: 2500-10,000), such as polyaspartic acid (cation sorption), polyarginine (oxyanion sorption), and polycysteine (chelation exchange), directly on the membrane pore surfaces. Since these sorbents have also been found to have high selectivity over non-toxic metals, such as calcium, they are ideal candidates for hybrid processing with RO/NF.  相似文献   

15.
The GAC-SBR efficiency was decreased with the increase of dyestuff concentration or the decrease of bio-sludge concentration. The system showed the highest removal efficiency with synthetic textile wastewater (STWW) containing 40 mg/L direct red 23 or direct blue 201 under MLSS of 3,000 mg/L and hydraulic retention time (HRT) of 7.5 days. But, the effluent NO(3)(-) was higher than that of the influent. Direct red 23 was more effective than direct blue 201 to repress the GAC-SBR system efficiency. The dyes removal efficiency of the system with STWW containing direct red 23 was reduced by 30% with the increase of direct red 23 from 40 mg/L to 160 mg/L. The system with raw textile wastewater (TWW) showed quite low BOD(5) TKN and dye removal efficiencies of only 64.7+/-4.9% and 50.2+/-6.9%, respectively. But its' efficiencies could be increased by adding carbon sources (BOD(5)). The dye removal efficiency with TWW was increased by 30% and 20% by adding glucose (TWW+glucose) or Thai rice noodle wastewater (TWW+TRNWW), respectively. SRT of the systems were 28+/-1 days and 31+/-2 days with TWW+glucose and TWW+TRNWW, respectively.  相似文献   

16.
A novel type of adsorbent (CM) was synthesized by cellulose modified with maleic anhydride to remove heavy metal ions and organic dyes in this work. The synthesized adsorbent was characterized by FTIR, SEM, TGA and XRD. The degree of carboxyl group of CM was found to be 2.7 mmol g−1 by the titration method. The adsorption of Hg(II) ions as heavy metal ions while basic fuchsine, methylene blue and crystal violet as organic dyes by CM was investigated. The influence of different experimental parameters such as pH, contact time, temperature on removal process was evaluated. The results indicated that the CM has a good adsorption capacity for Hg(II). The maximum adsorption capacity of Hg(II) was found to be 172.5 mg g−1, and the adsorption process was described by Freundlich isotherm model of adsorption well. The process of basic fuchsine, methylene blue and crystal violet adsorbed by CM was also studied and the adsorption removal rate of those organic dyes was 88.10, 98.47 and 92.85 % under the optimum conditions, respectively. The adsorption process was depicted by the Langmuir isotherm model more correctly.  相似文献   

17.
The present study reported synthesis of a new inorganic exchanger, i.e., zirconium hydrogen monothiophosphate [Zr(HPO3S)2, denoted ZrPS] and its selective sorption toward Pb(II), Cd(II) and Zn(II) ions. ZrPS sorption toward all the three metals is dependent upon solution pH due to the ion-exchange nature. As compared to another inorganic exchanger zirconium phosphate [Zr(HPO4)2, denoted ZrP], ZrPS exhibits highly selective sorption toward these toxic metals from the background of calcium ions at great levels. Such sorption preference is mainly attributed to the presence of –SH group in ZrPS, as further demonstrated by FT-IR analysis and XPS study. Moreover, ZrPS particles preloaded with heavy metals could be efficiently regenerated with 6 M HCl for multiple use without any noticeable capacity loss. All the experimental results indicated that ZrPS is a promising sorbent for enhanced heavy metals removal from contaminated water.  相似文献   

18.
As a part of removal of toxic heavy metals from hazardous wastes, solid phase extraction (SPE) of mercury(II) at trace and ultra trace levels was studied using 1-(2-thiazolylazo)-2-naphthol (TAN) functionalized activated carbon (AC). The SPE material removes traces of mercury(II) quantitatively in the pH range 6.0 +/- 0.2. Other parameters that influence quantitative recovery of mercury(II), viz. percent concentration of TAN in AC, amount of TAN-AC, preconcentration time and volume of aqueous phase were varied and optimized. The possible means of removal of Hg(II) from other metal ions that are likely to be present in the wastes of the chloroalkali industry is discussed. The potential of TAN-functionalized AC SPE material for decontaminating mercury from the brine sludge and cell house effluent of a chloralkali plant has been evaluated.  相似文献   

19.
The role of sawdust in the removal of unwanted materials from water   总被引:15,自引:0,他引:15  
Sawdust, a relatively abundant and inexpensive material is currently being investigated as an adsorbent to remove contaminants from water. Chemical substances including dyes, oil, toxic salts and heavy metals can be removed very effectively with the organic material. This article presents a brief review on the role of sawdust in the removal of contaminants. Studies on the adsorption of various pollutants by different sawdust materials are reviewed and the adsorption mechanism, influencing factors, favorable conditions, etc. discussed in this paper. Some valuable guidelines can be drawn for either scientific research or industrial design.  相似文献   

20.
In this paper, early research on the structure and properties of coir fibres has been critically reviewed. Gaps in the scientific information on the structure and properties of coir fibre have been identified. Attempts made to fill some of these gaps include the evaluation of mechanical properties (as functions of the retting process, fibre diameter and gauge lengths of fibre, as well as of the strain rates) and fracture mechanisms using optical and scanning electron microscopy. The deformation mechanism of coir fibre resulting in certain observed properties has been discussed with the existing knowledge of the structure of plant fibres as a basis. It is concluded that more refined models need to be developed for explaining the observed mechanical properties of coir fibres. Some of the suggestions for further work include relating properties of fibres to factors like the chemical composition of the fibre and the size and number of cells, size of lumen, variation in micro-fibril angle within each cell and between different cells of the same fibre, and understanding the deformation of the whole fibre in terms of deformation of individual micro-components. Further work is required on the effects of mechanical, thermal and thermomechanical, chemical treatments to modify the structure and mechanical properties of these fibres in such a way as to make them more suitable as reinforcements in polymer, clay and cement matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号