共查询到16条相似文献,搜索用时 62 毫秒
1.
针对渐进直推式支持向量机箅法训练速度慢和学习性能不稳定的问题,提出一种近邻渐进直推式支持向量机算法.该算法利用支持向量机中支持向量信息,选择支持向量附近的无标签样本点进行标注,采用支持向量预选取的方法减少训练集的规模,提高算法的速度.实验结果表明了该算法的有效性. 相似文献
2.
支持向量机(support vector machine)是近年来在统计学习理论的基础上发展起来的一种新的模式识别方法,在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势.直推式学习(transductive inference)试图根据已知样本对特定的未知样本建立一套进行识别的方法和准则.较之传统的归纳式学习方法而言,直推式学习往往更具普遍性和实际意义.提出了一种基于支持向量机的渐进直推式分类学习算法,在少量有标签样本和大量无标签样本所构成的混合样本训练集上取得了良好的学习效果. 相似文献
3.
为缩小图像的低层特征与高层语义之间的语义鸿沟,基于支持向量机的相关反馈机制受到越来越广泛的关注,但这种方法并没有利用未标记样本的隐含信息.为更好地利用这些信息,提出将直推式支持向量机作为反馈过程中的学习算法.通过分析其所用特征向量的特点,设计一种颜色稀疏特征,并将其与纹理特征结合作为图像描述的特征.实验结果表明该方法较令人满意,同时也说明直推式支持向量机可在文本分类以外的领域取得较好结果. 相似文献
4.
针对半监督学习中渐进直推支持向量机(PTSVM)算法每次标注的样本数太少、训练速度慢、回溯式学习多、学习性能不稳定的问题,提出一种快速的渐进直推支持向量机学习算法.该算法利用支持向量的信息,基于支持向量域描述(SVDD)选择新标注、无标签的样本点,以区域标注法代替PTSVM的成对标注法,不仅继承了其渐进赋值和动态调整的规则,而且在保持甚至提高算法精度的同时,大大提高算法速度.在人工模拟数据和真实数据上的实验结果表明该算法的有效性. 相似文献
5.
6.
7.
8.
9.
《计算机应用与软件》2013,(3)
提出基于人工鱼群优化的直推式支持向量机分类算法。该算法使直推式学习思想的优势得到充分的展现,在部分UCI标准数据集和20-Newgroups文本实验数据集上的对比实验表明,该算法较经典支持向量机算法和基于蚁群算法的直推式支持向量机算法具有更高的分类性能。 相似文献
10.
针对直推式支持向量机(TSVM)学习模型求解难度大的问题,提出了一种基于k均值聚类的直推式支持向量机学习算法——TSVMKMC。该算法利用k均值聚类算法,将无标签样本分为若干簇,对每一簇样本赋予相同的类别标签,将无标签样本和有标签样本合并进行直推式学习。由于TSVMKMC算法有效地降低了状态空间的规模,因此运行速度较传统算法有了很大的提高。实验结果表明,TSVMSC算法能够以较快的速度达到较高的分类准确率。 相似文献
11.
门限签名是一种特殊而重要的数字签名.但在现有的门限签名方案中,合谋攻击一直是一个难以解决的问题.该文对现有抗合谋攻击门限签名方案进行了安全性分析,指出该方案存在的缺陷,并基于现有的门限签名体制,对如何抵抗合谋攻击给出了一些启发式的思想和方法. 相似文献
12.
王睿 《计算机与数字工程》2013,(12):1900-1902
传统转导支持向量机有效地利用了未标记样本,具有较高的分类准确率,但是计算复杂度较高。针对该不足,论文提出了一种基于核聚类的启发式转导支持向量机学习算法。首先将未标记样本利用核聚类算法进行划分,然后对划分后的每一簇样本标记为同一类别,最后根据传统的转导支持向量机算法进行新样本集合上的分类学习。所提方法通过对核聚类后同一簇未标记样本赋予同样的类别,极大地降低了传统转导支持向量机算法的计算复杂度。在MNIST手写阿拉伯数字识别数据集上的实验表明,所提算法较好地保持了传统转导支持向量机分类精度高的优势。 相似文献
13.
李琳 《数字社区&智能家居》2014,(1):115-119
增量式支持向量机学习算法是一种重要的在线学习方法。传统的单增量支持向量机学习算法使用一个数据样本更新支持向量机模型。在增加或删除的数据样本点较多时,这种模型更新模式耗时巨大,具体原因是每个被插入或删除的样本都要进行一次模型参数更新的判断。该文提出一种基于参数规划的多重增量式的支持向量机优化训练算法,使用该训练算法,多重的支持向量机的训练时间大为减少。在合成数据集及真实测试数据集上的实验结果显示,该文提出的方法可以大大降低多重支持向量机训练算法的计算复杂度并提高分类器的精度。 相似文献
14.
一种快速支持向量机增量学习算法 总被引:16,自引:0,他引:16
经典的支持向量机(SVM)算法在求解最优分类面时需求解一个凸二次规划问题,当训练样本数量很多时,算法的速度较慢,而且一旦有新的样本加入,所有的训练样本必须重新训练,非常浪费时间.为此,提出一种新的SVM快速增量学习算法.该算法首先选择那些可能成为支持向量的边界向量,以减少参与训练的样本数目;然后进行增量学习.学习算法是一个迭代过程,无需求解优化问题.实验证明,该算法不仅能保证学习机器的精度和良好的推广能力,而且算法的学习速度比经典的SVM算法快,可以进行增量学习. 相似文献
15.
支持向量机算法对噪声和异常点是敏感的,为了克服这个问题,人们引入了模糊隶属度。传统确定样本模糊隶属度的方法,都是基于原始空间的。文章提出了基于特征空间的模糊隶属度函数模型。在该模型中,以特征空间中的样本为中心,以给定的距离d为半径作超球,根据其它样本落到超球内的个数来确定中心样本点的模糊隶属度。并将新的模糊隶属度模型引入自适应支持向量机,提出了模糊自适应支持向量机算法。实验结果表明,该模型能有效地提高自适应支持向量机的抗噪能力和预测精度。 相似文献