首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Each core configuration of a research reactor can be optimized to provide particular or general multi-purpose irradiating conditions; specially, it includes refueling cycle length and irradiating neutron fluxes if a core management is limited to a refueling task. Each practical core or fuel management operation needs providing all of related Operational Limits and safety Conditions (OLCs). In this paper refueling cycle length and maximum irradiating thermal neutron flux are chosen as the optimizing objectives; also OLCs including total Power Peaking Factor, Shutdown Margin, Reactivity Safety Factor (RSF), and maximum permissible core excess reactivity are influenced as optimizing constraints. All parameters have been calculated accurately and benchmarked against operational parameters of a 5 MW MTR. Primary 2-D annealing process is following up to a secondary re-annealing in fine 3-D calculations. This expands global search space while the required time is reduced. Safety margins are introduced by stepwise penalty functions instead of a direct rejecting method. Results are very promising, required iterations are decreased; safety faults are automatically removed, and final results are gained near touch the infeasible frontier formed by safety margins. Refueling cycle length is significantly increased, averaged and maximum irradiating neutron fluxes are enhanced while selected OLCs are passed.  相似文献   

2.
The possibility that a tokamak D-T fusion neutron source, based on ITER physics and technology, could be used to drive sub-critical, fast-spectrum nuclear reactors fueled with the transuranics (TRU) in spent nuclear fuel discharged from conventional nuclear reactors has been investigated at Georgia Tech in a series of studies which are summarized in this paper. It is found that sub-critical operation of such fast transmutation reactors is advantageous in allowing longer fuel residence time, hence greater TRU burnup between fuel reprocessing stages, and in allowing higher TRU loading without compromising safety, relative to what could be achieved in a similar critical transmutation reactor. The required plasma and fusion technology operating parameter range of the fusion neutron source is generally within the anticipated operational range of ITER. The implications of these results for fusion development policy, if they hold up under more extensive and detailed analysis, is that a D-T fusion tokamak neutron source for a sub-critical transmutation reactor, built on the basis of the ITER operating experience, could possibly be a logical next step after ITER on the path to fusion electrical power reactors. At the same time, such an application would allow fusion to contribute to meeting the nation’s energy needs at an earlier stage by helping to close the fission reactor nuclear fuel cycle.  相似文献   

3.
As part of its mission to prepare the operation of ITER, a major programme of enhancements has just been completed on the JET tokamak. These enhancements include a complete replacement of the plasma-facing components in JET, from carbon-based to the combination of beryllium and tungsten foreseen for ITER, an upgrade of the neutral beam heating available on JET from 20 MW/short pulse to 30 MW/long pulse operation, the installation of a high frequency pellet injection system for plasma fuelling and ELM control studies, an upgrade to the JET vertical stability system and a suite of new diagnostics.The future JET programme is foreseen to proceed progressively from a test of fuel retention in the standard regimes of ITER operation towards more aggressive, high performance experiments that will demonstrate the operating space limits with the new wall. Depending on the results of the earlier experiments, the exploitation of the enhancements is foreseen to be completed with a deuterium-tritium experiment. This would represent the most integrated test of ITER operational scenarios possible before ITER itself.JET is a cooperative programme funded and exploited in collaboration by all of the European fusion laboratories. As such, JET is a test bed for multi-national use of a single fusion facility, as is foreseen for ITER. Opportunities for broadening the participation in JET to other ITER Parties are presently being explored. If these opportunities can be implemented, JET would provide not only an integrated test of ITER regimes of operation but also a demonstration of how ITER will be operated, even to the extent of including significant numbers of the same team who will eventually operate ITER.  相似文献   

4.
The ITER plasma control system (PCS) will play a central role in enabling the experimental program to attempt to sustain DT plasmas with Q = 10 for several hundred seconds and also support research toward the development of steady-state operation in ITER. The PCS is now in the final phase of its conceptual design. The PCS relies on about 45 diagnostic systems to assess real-time plasma conditions and about 20 actuator systems for overall control of ITER plasmas. It will integrate algorithms required for active control of a wide range of plasma parameters with sophisticated event forecasting and handling functions, which will enable appropriate transitions to be implemented, in real-time, in response to plasma evolution or actuator constraints.In specifying the PCS conceptual design, it is essential to define requirements related to all phases of plasma operation, ranging from early (non-active) H/He plasmas through high fusion gain inductive plasmas to fully non-inductive steady-state operation, to ensure that the PCS control functionality and architecture will be capable of satisfying the demands of the ITER research plan. The scope of the control functionality required of the PCS includes plasma equilibrium and density control commonly utilized in existing experiments, control of the plasma heat exhaust, control of a range of MHD instabilities (including mitigation of disruptions), and aspects such as control of the non-inductive current and the current profile required to maintain stable plasmas in steady-state scenarios. Control areas are often strongly coupled and the integrated control of the plasma to reach and sustain high plasma performance must apply multiple control functions simultaneously with a limited number of actuators. A sophisticated shared actuator management system is being designed to prioritize the goals that need to be controlled or weigh the algorithms and actuators in real-time according to dynamic control needs. The underlying architecture will be event-based so that many possible plasma or plant system events or faults could trigger automatic changes in the control algorithms or operational scenario, depending on real-time operating limits and conditions.  相似文献   

5.
The ITER vacuum vessel (VV) is one of the most critical components in the ITER project. It is on the critical path in the construction schedule and it is also a safety important class component (SIC), providing the first confinement barrier.As a result of reviews and the latest physics analyses, design requirements have been updated (e.g. ELM/VS coils) and a few design changes have to be implemented. This paper covers the updates of the VV vertical and horizontal EM load conditions during asymmetric VDEs, the design analysis of the ELM/VS coils and their interfaces to the VV, the blanket manifold design and the preparation of the technical specification in preparation for the procurement arrangement to be signed.  相似文献   

6.
ITER is a nuclear facility. It is essential to maintain operational safety or to bring this facility to a safe state in case of accidents or incidents. During plasma operation ITER plasma will generate significant heat loads on the plasma facing components. For a few reference accidents there is the need to stop plasma reliably within a certain time. Fusion power shutdown system is the safety system to implement this termination function for ITER. It is based on the concept of massive gas injection.This paper summarizes the safety requirements, logics and the physics requirements on this system for reliable termination of ITER plasma. With regard to the quantity of gas, transient behavior simulation is shown, subsequently providing guideline for laboratory bench-testing. Conceptual engineering design of the system is given together with instrumentation and control specifications.  相似文献   

7.
The ITER remote handling (RH) system has been divided into 7 major equipment system procurements that deliver complete systems (operator interfaces, equipment controllers, and equipment) according to task oriented functional specifications. Each equipment system itself is an assembly of transporters, power manipulators, telemanipulators, vehicular systems, cameras, and tooling with a need for controllers and operator interfaces.From an operational perspective, the ITER RH systems are bound together by common control rooms, operations team, and maintenance team; and will need to achieve, to a varying degree, synchronization of operations, co-operation on tasks, hand-over of components, and sharing of data and resources. The separately procured RH systems must, therefore, be integrated to form a unified RH system for operation from the RH control rooms.The RH system will contain a heterogeneous mix of specially developed RH systems and off-the-shelf RH equipment and parts. The ITER Organization approach is to define a control system architecture that supports interoperable heterogeneous modules, and to specify a standard set of modules for each system to implement within this architecture. Compatibility with standard parts for selected modules is required to limit the complexity for operations and maintenance. A key requirement for integrating the control system modules is interoperability, and no module should have dependencies on the implementation details of other modules.The RH system is one of the ITER Plant systems that are integrated and coordinated through the hierarchical structure of the ITER CODAC system. It is distinguished from other Plant systems by the man-in-the-loop nature of RH operations and the need for control rooms at a level below the main control room. The RH control system architecture has been designed to also support the central monitoring and coordination of the RH activities.  相似文献   

8.
利用嵌入了液态锂铅(LiPb)的热工水力子模块的系统程序RELAP5/MOD3,对双功能液态锂铅(DFLL)实验包层模块(TBM)的安全特性进行评价。对DFLL-TBM及其辅助冷却系统的稳态运行工况、预期运行事件和相关事故工况进行了建模、计算和分析。计算结果表明,稳态运行时第一壁(FW)结构材料表面最高温度低于允许值550 ℃。事故工况下氦气泄漏引起的ITER真空室(VV)、窗口设备室(port cell)以及托卡马克冷却水系统大厅拱顶(TCWS vault)的增压均低于ITER要求的限值0.2 MPa。实验包层钢结构不会熔化且可通过辐射换热有效地导出衰变余热。DFLL-TBM的设计可满足ITER对其热工水力安全方面的要求。  相似文献   

9.
The ITER availability objective is to reach for the machine operation in H phase an inherent availability of 60% and an operational availability of 32% assuming three 8 h plasma shifts operating mode and typically 8-month major shutdown after each 16-month experimental campaign. A functional analysis of the overall ITER machine from highest level functions down to main operational functions has been developed. The inherent availability (AI) objective of ITER has been defined on the basis of a bottom-up approach and using the results of reliability, availability maintainability and inspectability (RAMI) analyses. The ITER strategy in terms of operational availability (AO), Plasma pulse availability (AP) and fluence objectives is not only to improve reliability by optimizing the design but also to gain the maximum of operation time by decreasing the scheduled downtime for preventive maintenance and increasing the maintainability of the operational functions, thus decreasing the frequency and the time to maintain or/and to repair.  相似文献   

10.
In the ITER project the cryostat is one of the most important components. Cryostat shall transfer all the loads that derive from the TOKAMAK inner basic machine, and from the cryostat itself, to the floor of the TOKAMAK pit (during the normal and off-normal operational regimes, and at specified accidental conditions). This paper researches the dynamic structure strength of the ITER cryostat during the operation of TOKAMAK. Firstly the paper introduces the types of loads and the importance of every type load to the research. Then it gives out the method of building model and principle of simplified model, boundary conditions and the way of applying loads on the cryostat. Finally the author discussed the analysis result and the strength questions of cryostat, also, the author pointed out the opinions according to the analysis results.  相似文献   

11.
Actively cooled plasma facing components (PFCs) have to exhaust high heat fluxes from plasma radiation and plasma–wall interaction. Critical heat flux (CHF) event may occur in the cooling channel due to unexpected heat loading or operational conditions, and has to be detected as soon as possible. Therefore it is essential to develop means of monitoring based on precursory signals providing an early detection of this destructive phenomenon, in order to be able to stop operation before irremediable damages appear.Capabilities of CHF early detection based on acoustic techniques on PFC mock-ups cooled by pressurised water were already demonstrated. This paper addresses the problem of the detection in case of flow rate reduction and of flow dilution resulting from multiple plasma facing units (PFU) which are hydraulically connected in parallel, which is the case of ITER divertor. An experimental study is launched on a dedicated mock-up submitted to heat loads up to the CHF. It shows that the measurement of the acoustic waves, generated by the cooling phenomena, allows the CHF detection in conditions similar to that of the ITER divertor, with a reasonable number of sensors. The paper describes the mock-ups and the tests sequences, and comments the results.  相似文献   

12.
The Neutral Beam Test Facility, which will be built in Padova, Italy, is aimed at developing the ITER heating neutral beam injector (HNB) and at testing and optimizing its operation up to nominal performance before installation on ITER. It requires the development of two independent experiments referred to as SPIDER (source for production of ions of deuterium extracted from Rf plasma) and MITICA (megavolt ITer injector & concept advancement). SPIDER will explore the full-size negative ion source for ITER, whereas MITICA will explore the full-size ITER neutral beam injector. Both experiments will be designed for long-pulse operation, up to 3600 s, as ITER itself. MITICA includes three functional components: the heating neutral beam injector plant system (HNB), which is the device under test; the auxiliary plant system (AUX), which includes all equipment to operate the HNB in the test facility (e.g. the local electric grid to feed the HNB power supplies), and MITICA supervisory system that is an electronics/informatics infrastructure to operate the facility. The paper introduces the requirements for the control and data acquisition systems of the experiments and proposes a preliminary design for both systems. SPIDER, which is preparatory to MITICA and will be developed on a shorter time scale, has no constraints coming from ITER CODAC, whereas MITICA includes the ITER neutral beam injector and therefore must be fully compatible with ITER CODAC.  相似文献   

13.
Eurofer97 is a Reduced Activation Ferritic-Martensitic (RAFM) steel developed for use as structural material in fusion power reactors blankets and in particular the future DEMOnstration power plant that should follow ITER. In order to evaluate the performances of the different blanket concepts in a fusion-relevant environment, the ITER experimental programme foresees the installation of dedicated Test Blanket Modules (TBMs), representative of the corresponding DEMO blankets, in selected equatorial ports. To be fully relevant, TBMs will have to be designed and fabricated using DEMO relevant technologies and will, in particular, use Eurofer97 as structural material.While the use of ferritic/martensitic steels is not new in the nuclear industry, the fusion environment in ITER poses new challenges for the structural materials. Besides, contrary to DEMO, ITER is characterised by a strongly pulsed mode of operation that could have severe consequences on the lifetime of the components. This paper gives an overview of the issues related to the design of Eurofer97 structures in TBM components, discussing the choice of reference Codes&Standards and the consistency of the design rules with Eurofer97 mechanical properties.  相似文献   

14.
司恒远 《核动力工程》2019,40(6):118-123
安全分级的目的是确保物项的设计、制造、建造、调试和运行采用恰当的要求,使物项在所有预期的运行工况下有适宜的质量,进而确保安全功能的实现。国际原子能机构(IAEA)2014年颁布的核电厂构筑物、系统和部件(SSC)安全分级导则(SSG-30),其安全分级原则涵盖核电厂5个纵深防御层次,从设计预防措施和安全功能分类两个维度识别安全相关物项的重要性,考虑核电厂运行工况状态和放射性与运行限值的要求,进而确定物项的安全级别和相关的规范要求。   相似文献   

15.
16.
ITER is the first worldwide international project aiming to design a device that proves the physics and technological basis for fusion power plants to produce nuclear fusion energy. In the project, the RAMI approach (reliability, availability, maintainability and inspectability) has been adopted for technical risk control to guide the design of components in preparation for operation and maintenance. RAMI analysis of the ITER central interlock system (CIS), which shall provide investment protection for the ITER systems was performed on the conceptual design. A functional breakdown was prepared in a bottom-up approach, resulting in the system being divided into 5 main functions and 7 sub-functions which are described using the IDEFØ method. Reliability block diagrams (RBDs) were prepared to estimate the reliability and availability of each function under stipulated operating conditions. Initial and expected scenarios were analyzed to define risk-mitigation actions. The inherent availability of the ITER CIS expected after implementation of mitigating actions was calculated to be 99.86% over 2 years, which is the typical interval of the scheduled maintenance cycles. A failure modes, effects and criticality analysis (FMECA) was performed to initiate risk mitigation action. Criticality matrices highlight the risks of the different failure modes with regard to the probability of their occurrence and impact on operations. It was assessed that the availability of the ITER CIS, with appropriate mitigating actions applied, meets the project availability requirement for the system.  相似文献   

17.
The safety of nuclear power plants and the strength of the components of the first-loop equipment operating under pressure are examined together. The problem is analyzed for an actual situation with possible extension of the operational service life of the first-generation power-generating units. Since it is impossible to upgrade the first-generation units, in accordance with modern safety requirements, effective compensating measures at other stages of a multistage protection system must be formulated and implemented in the form of appropriate protection and containment safety systems. It is suggested that as one such measure special attention be focused on the diagnostics of the service life of equipment taking account of the design and real cyclic and other loads which occur. 9 references.  相似文献   

18.
Organic coolants, such as OS-84, offer unique advantages for fusion reactor applications. These advantages are with respect to both reactor operation and safety. The key operational advantage is a coolant that can provide high temperature (350–400°C) at modest pressure (2–4 MPa). These temperatures are needed for conditioning the plasma-facing components and, in reactors, for achieving high thermodynamic conversion efficiencies (>40%). The key safety advantage of organic coolants is the low vapor pressure, which significantly reduces the containment pressurization transient (relative to water) following a loss of coolant event. Also, from an occupational dose viewpoint, organic coolants significantly reduce corrosion and erosion inside the cooling system and consequently reduce the quantity of activation products deposited in cooling system equipment. On the negative side, organic coolants undergo both pyrolytic and radiolytic decomposition, and are flammable. While the decomposition rate can be minimized by coolant system design (by reducing coolant inventories exposed to neutron flux and to high temperatures), decomposition products are formed and these degrade the coolant properties. Both heavy compounds and light gases are produced from the decomposition process, and both must be removed to maintain adequate coolant properties. As these hydrocarbons may become tritiated by permeation, or activated through impurities, their disposal could create an environmental concern. Because of this potential waste disposal problem, consideration has been given to the recycling of both the light and heavy products, thereby reducing the quantity of waste to be disposed. Preliminary assessments made for various fusion reactor designs, including ITER, suggest that it is feasible to use organic coolants for several applications. These applications range from first wall and blanket coolant (the most demanding with respect to decomposition), to shield and vacuum vessel cooling, to an intermediate cooling loop removing heat from a liquid metal loop and transferring it to a steam generator or heat exchanger.  相似文献   

19.
This paper deals with the requirements, operational modes and design of the cooling system for the ITER Neutral Beam test experiments. Different operating conditions of the experiments have been considered in order to identify the maximum heat loads that constitute, with the inlet temperature and pressure at each component, the design requirements for the cooling system.The test facility components will be actively cooled by ultrapure water realizing a closed cooling loop for each group of components. Electrochemical corrosion issues have been taken into account for the design of the primary cooling loops and of the chemical and volume control system that will produce water with controlled resistivity and pH. Draining and drying systems have been designed to evacuate water from the components and primary loops in case of leakage, and to carry out leak detection.Tritium concentration, water resistivity and pH will be measured and monitored at each primary loop for safety reasons and high voltage holding reliability. The measured water flow rates and temperatures will be used to calculate the exchanged heat fluxes and powers. Flow regulating valves and speed of variable driven pumps will be adjusted to control the component temperatures in order to fulfil the functional and thermohydraulic requirements.  相似文献   

20.
China has proposed the dual-functional lithium-lead (DFLL) tritium breeding blanket concept for testing in ITER as a test blanket module (TBM), to demonstrate the technologies of tritium self-sufficiency, high-grade heat extraction and efficient electricity production which are needed for DEMO and fusion power plant. Safety assessment of the TBM and its auxiliary system should be conducted to deal with ITER safety issues directly caused by the TBM system failure during the design process. In this work, three potential initial events (PIEs) – in-vessel loss of helium (He) coolant and ex-vessel loss of He coolant and loss of flow without scram (LOFWS) – were analyzed for the TBM system with a modified version of the RELAP5/MOD3 code containing liquid lithium-lead eutectic (LiPb). The code also comprised an empirical expression for MHD pressure drop relevant to three-dimensional (3D) effect, the Lubarsky–Kaufman convective heat transfer correlation for LiPb flow and the Gnielinski convective heat transfer correlation for He flow. Since both LiPb and He serve as TBM coolants, the LiPb and He ancillary cooling systems were modeled to investigate the thermal-hydraulic characteristic of the TBM system and its influence on ITER safety under those accident conditions. The TBM components and the coolants flow within the TBM were simulated with one-dimensional heat structures and their associated hydrodynamic components. ITER enclosures including vacuum vessel (VV), port cell and TCWS vault were also covered in the model for accident analyses. Through this best estimate approach, the calculation indicated that the current design of DFLL-TBM and its auxiliary system meets the thermal-hydraulic and safety requirements from ITER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号