首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated experimental equilibrium solubilities of Jatropha curcas and Aquiliaria crassna oils dissolved in supercritical carbon dioxide at temperatures of 318-338 K and pressures of 20, 25, 30, 35 MPa. The highest solubility of J. curcas and A. crassna oil were 29.8 and 28.4 mg L−1, respectively, at 338 K and 35 MPa. The oil solubilities and the concentration of triglycerides both increased with increasing temperature and pressure. Triglyceride molecules surrounded by carbon dioxide molecules may be proposed since solubilities increased with the flux of supercritical carbon dioxide. The solubility of these two oils linearly increased with the density of supercritical carbon dioxide. Experimental data of the oil solubility were successfully correlated by the Chrastil equation.  相似文献   

2.
This study examines the effects of pressure, temperature and solvent to solid ratio (SSR) on extraction efficiency of triglycerides from powdered Jatropha seeds by using supercritical carbon dioxide extraction. Supercritical extractions were designed for pressures ranging from 250 to 350 bar, temperatures ranging from 313 to 333 K and SSR values ranging from 65:1 to 125:1. All values were selected using response surface methodology in order to determine their effects on the concentration of triglycerides from the extracted oil. Using 3750 g of carbon dioxide over 5 h, a supercritical carbon dioxide extraction (at 350 bar, 333 K and an SSR value of 125:1) yielded 43.51% oil. The concentration and extraction efficiency (i.e. recovery) of triglycerides in the extract reached 657.1 mg/g and 97.62%, respectively. Changes in pressure presented more effective in increasing the recovery of triglycerides, but both temperature and the SSR value are important in obtaining high concentration of triglycerides from the Jatropha seeds that are useful for biodiesel materials.  相似文献   

3.
Xianbo Hu 《Polymer》2004,45(7):2333-2340
The crystallization behavior of bisphenol-A polycarbonate (PC) and PC/clay nanocomposites were studied in the presence of supercritical carbon dioxide (SCCO2) using DSC, WAXD and AFM. In the absence of SCCO2, nano-scale clay itself does not change the crystallization behavior of PC under our experimental conditions. In the presence of SCCO2, clay appears to be an efficient nucleating agent and enhances the crystallization of PC. The addition of clay reduces the induction time of crystallization and increases the crystallization rate. The increase in crystallinity with clay depends on the crystallization time. When the crystallization time is sufficient, PC and PC/clay composites tend to have similar crystallinity in the range of 26%. Two melting temperatures are observed during the DSC heating scan, and are mainly associated with the melting of both secondary and primary crystals. Results show that the clay influences the primary crystallization process more than the secondary crystallization process.  相似文献   

4.
Masaaki Kojima  Yuko Ikeda 《Polymer》2005,46(7):2016-2019
The behavior of supercritical CO2 (scCO2)/low molar mass molecule/crosslinked rubber ternary system was investigated in relation to the impregnation of reagent into the isoprene rubber (IR) vulcanizates, which was the first step of new decrosslinking reaction. The diffusion coefficient of decrosslinking reagent, diphenyl disulfide (DD), into the IR network in scCO2 was 3.2×10−11 m2/s. The distribution coefficient (Kc) of DD between the solvent and IR matrix was also determined for scCO2 and toluene. The Kc for scCO2 was higher about four orders of magnitude than that for toluene. DD was uniformly dispersed in the crosslinked IR matrix under 10 MPa at 313 K in scCO2. These phenomena are advantages of use of scCO2 for the effective decrosslinking reaction of IR vulcanizate.  相似文献   

5.
Zi Wang  Qingzhi Dong  Chun Pu Hu 《Polymer》2006,47(22):7670-7679
A series of fluorinated diblock copolymers, consisting of styrene (St)-acrylonitrile (AN) copolymer [poly(St-co-AN)] and poly-2-[(perfluorononenyl)oxy]ethyl methacrylate, with various compositions as well as with different molecular weights were synthesized by atom transfer radical polymerization and characterized. Dispersion polymerization of acrylonitrile in supercritical carbon dioxide (scCO2) at 30 MPa and at 65 °C with this kind of amphiphilic block copolymer as a stabilizer and 2,2′-azobisisobutyronitrile as an initiator was investigated. The experimental results indicated that, in the presence of a small amount of poly(St-co-AN) (5 wt% to AN), spherical particles of polyacrylonitrile (PAN) were prepared with small diameter and narrow polydispersity (dn = 153 nm, dw/dn = 1.12), resulting from the high stabilizing efficiency of this fluorinated block copolymer. Furthermore, the polymerization of AN in scCO2 under different initial pressures especially under low pressure (<14 MPa) was studied. When the polymerization was carried out around the critical pressure of CO2 (7.7-7.8 MPa), the PANs with high molecular weight (Mν ≈ 130,000-194,000) were synthesized at high monomer conversion (>90%) no matter whether the stabilizer was added, compared to those synthesized by dispersion polymerization at 30 MPa. It was also found that the crystallinity of PAN synthesized at 7.7-7.8 MPa was somewhat higher than that synthesized at 30 MPa, while its crystallite size did not change.  相似文献   

6.
Ning Yu 《Polymer》2011,52(2):472-480
As a typical engineering plastic and high-crystallization polymer, polyoxymethylene (POM) has been successfully wrapped on single-walled carbon nanotubes (SWCNTs) using a simple supercritical carbon dioxide (SC CO2) antisolvent-induced polymer epitaxy method. The characterization results of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) reveal that the SWCNTs are coated by laminar POM with the thicknesses of a few nanometers. The polymer adsorption on CNTs via multiple weak molecular interactions of CH groups with CNTs has been identified with FTIR and Raman spectroscopy. The experimental results indicate that the decorating degree of POM on the surface of CNTs increases significantly with the increase of SC CO2 pressure, and accordingly the dispersion of SWCNT modified by POM at higher pressure are more excellent than that of obtained at lower pressure. Further the processing stability of POM/CNTs composites are investigated by differential scanning calorimetry and thermogravimetric analysis. The experimental results obtained show that their thermal stability behavior is closely related to surface properties of CNTs. Apparently, the composites with POM-decorating SWCNTs as the filler shows higher melting points compared to the POM composites with pristine SWCNTs as the filler. Therefore, we anticipate this work may lead to a controllable method making use of peculiar properties of SC CO2 to help to fabricate the functional CNTs-based nanocomposites containing highly crystalline thermoplastic materials such as POM.  相似文献   

7.
This work presents first results upon oxidation of type II cellulose by nitrogen dioxide dissolved in carbon dioxide at high pressure. This reaction leads to oxidized cellulose, a natural-based bioresorbable fabric used for biomedical applications. The oxidation reaction takes place in a heterogeneous fluid-solid system. Kinetics of oxidation is presented here and effects of operating conditions such as pressure, temperature and initial moisture content of cellulose are investigated. Results are presented in terms of degree of oxidation of cellulose and quality of the final oxidized cellulose, which has been characterized using liquid-state and solid-state 13C NMR. The experimental results show the existence of possible secondary reactions which may lead to oxidized cellulose with insufficient mechanical strength. An attempt is made to evidence and understand the role of CO2 as a solvent in this system. Indeed, although supercritical CO2 appears to be a suitable candidate as a solvent for oxidation reactions, some inhibiting effect on nitrogen dioxide activity are observed in this case.  相似文献   

8.
The impact of side chain and midblock length on the solubility of ABA triblock copolymers of fluorooxetane-(ethylene oxide)-fluorooxetane in carbon dioxide is examined. The use of short fluorinated side chains instead of long fluorinated chains prevents issues with bioaccumulation of the degradation products of the surfactant. At 40 °C for the same degree of polymerization, increasing the number of perfluoro-units from one to four results in a non-monotonic change in the cloud point pressure; the cloud point pressure decreases as the side chain is increased from perfluoromethyl to perfluoroethyl. However, further increasing the fluorinated side chain to perfluorobutyl results in a significant increase in the cloud point. However when the temperature is increased to 60 °C, the cloud point pressure for the surfactants with perfluoroethyl and perfluorobutyl side chains is statistically similar, while the perfluoromethyloxetane based surfactant requires a substantially larger pressure to obtain comparable solubility. An increase in cloud point pressure is observed when increasing the hydrophilic ethylene oxide segment. These results illustrate that commercially available fluorooxetane-(ethylene oxide)-fluorooxetane surfactants are highly soluble in CO2.  相似文献   

9.
In this study the foaming of poly(styrene-co-methyl methacrylate) (SMMA) using supercritical carbon dioxide is investigated. The effect of different foaming parameters such as temperature and pressure is studied in a quantitative and systematic way, with the aim to control and predict the resulting foam morphology. It is shown that once the polymer properties, such as the glass transition temperature and the solubility of CO2 are known, full control of the desired foam morphology can be obtained by a proper selection of temperature, pressure and depressurization rate.  相似文献   

10.
Natural cellulosic ramie fiber was acetylated using supercritical carbon dioxide (sc-CO2) as a reaction medium. The structure and properties of the acetylated fibers were investigated using infrared spectroscopy, scanning electron microscopy, X-ray diffraction (including synchrotron microbeam X-ray diffraction), nano-Raman scattering, and a tensile test. The acetylation reaction proceeded without using an organic solvent, and it reached to the core part of the fiber within a short period while maintaining the fiber morphology. The crystallites of cellulose triacetate II and cellulose coexist in the fiber. The acetylated fiber with an average degree of substitution of 1.9 showed high modulus (34.5 GPa) and high strength (763 MPa), which are the highest values for cellulose diacetate so far reported to date.  相似文献   

11.
本文通过熔融共混制得了EPDM/LDPE热塑性弹性体,压制标准试样,然后使用超临界二氧化碳作为发泡剂在高压反应釜中进行物理发泡。通过万能拉力机测试了弹性体力学性能,用扫描电镜观察了拉伸断面和泡孔的微观结构。结果表明:DCP硫化体系的热塑性弹性体的综合力学性能要优于硫黄硫化体系,随着硫化剂用量的增多,拉伸强度和撕裂强度有一个最大值,硬度上升;橡塑比在4:6时,力学性能达到最佳,最大拉伸强度为7.5MPa,最大撕裂强度为27.6MPa。扫描电镜观察其拉伸断面形貌,表明EPDM橡胶相与LDPE塑料相呈现“海-岛”两相微观结构;泡孔大小均匀性较好,成功制备了微米级微孔泡沫且泡孔大小分布均匀。  相似文献   

12.
A novel polymer blend comprising polyethylene (PE) and poly(vinyl acetate) (PVAc) with a biocompatible surface was developed for fabricating medical devices. This blend was obtained by a new synthetic method using supercritical carbon dioxide fluid. Further, the acetyl group on the surface of this blend was converted to the hydroxyl group following the phosphorylcholine (PC) group. Surface analysis of the blend with attenuated total reflection Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy and dynamic contact angle measurement revealed that the PC groups were located on the surface. Biocompatibility was evaluated by the adsorption of the bovine serum albumin and bovine plasma fibrinogen on the sheet surface. The hydrophilicity of the blend depended on the surface chemical structure introduced by surface reactions. Plasma protein adsorption decreased with the surface hydrophilicity. The PC groups were highly effective in reducing protein adsorption. We conclude that our process is a promising procedure for synthesizing new polymer materials including biomaterials.  相似文献   

13.
Mixtures of supercritical CO2 and N,N-dimethylformamide (DMF) are very often involved in supercritical fluid applications and their thermodynamic properties are required to understand and design these processes. Excess molar enthalpies () for CO2 + DMF mixtures were measured using an isothermal high-pressure flow calorimeter under conditions of temperature and pressure typically used in supercritical processes: 313.15 and 323.15 K at 9.00, 12.00, 15.00 and 18.00 MPa and 333.15 K at 9.00 and 15.00 MPa. The Peng-Robinson and the Soave-Redlich-Kwong equations of state were used in conjunction with the classical mixing rules to model the literature vapor-liquid equilibrium and critical data and the excess enthalpy data. In most cases, CO2 + DMF mixtures showed very exothermic mixing and excess molar enthalpies exhibited a minimum in the CO2-rich region. The lowest value (−4526 J mol−1) was observed for a CO2 mole fraction value of 0.713 at 9.00 MPa and 333.15 K. On the other hand, at 9.00 MPa and 323.15 and 333.15 K varies linearly with CO2 mole fraction in the two-phase region where a gaseous and a liquid mixture of fixed composition are in equilibrium. The effects of pressure and temperature on the excess molar enthalpy are large. For a given mole fraction, mixtures become less exothermic as pressure increases or temperature decreases. These excess enthalpy data were analyzed in terms of molecular interactions, phase equilibria, density and critical parameters previously reported for CO2 + DMF. All throughout this paper, the key concepts and modeling tools originate from the work of van der Waals: the paper is intended as a small piece of recognition of van der Waals overwhelming contributions to thermodynamics.  相似文献   

14.
In this study, supercritical carbon dioxide extraction of proantocyanidins (PRCs) was performed and the effect of different pressure, temperature and ethanol percentage was investigated. High performance liquid chromatography was used for the analysis of the compounds and it was found that the most effective parameter on the extraction was the amount of the ethanol percentage. Each compound was extracted from grape seeds at their maximum level when different parameters were used which was probably because of their different polarities. Gallic acid (GA), epigallocatechin (EGC) and epigallocatechingallate (EGCG) were extracted at their maximum level when the 300 bar 50 °C and 20% of ethanol was used. The maximum amount of catechin (CT) and epicatechin (ECT) were obtained when 300 bar 30 °C and 20% of ethanol was used for extraction, and 250 bar, 30 °C and 15% of ethanol was needed to extract highest amount of epicatechingallate (ECG).  相似文献   

15.
Soft rubber foams like poly(ethylene-co-vinyl acetate) (EVA) are industrially applied in a broad range of products, including sports gear, insulation materials and drug delivery systems. In contrast to glassy polymers, few studies in literature concern the foaming of soft rubbers using supercritical carbon dioxide. In this study, open microporous matrices of EVA have been formed with CO2. Prior to the foam expansion, sorption and swelling isotherms of CO2 in EVA have been measured and the obtained isotherms have been correlated using the Sanchez-Lacombe equation of state. Additionally, a pressure-independent diffusion coefficient of CO2 in EVA has been obtained from these experiments. The microporous foams have been formed by a pressure quench of the CO2-swollen polymer matrix. Sorption pressure as well as temperature and decompression times appear to determine the pore size and bulk density of the foam. These parameters allow for a control of the foam structure of EVA rubbers.  相似文献   

16.
Cross-linking polymerization of acrylic acid in supercritical carbon dioxide (scCO2) was studied in a batch reactor at 50 °C and 207 bar with either triallyl pentaerythritol ether or tetraallyl pentaerythritol ether as the cross-linker and with 2,2′-azobis(2,4-dimethyl-valeronitrile) as the free radical initiator. All polymers were white, dry, fine powders. Scanning electron microscopy showed that the morphology of the polymer particles was not affected by cross-linking. As the cross-linker concentration was increased, the polymer glass transition temperature first decreased, then increased. Water-soluble and water-insoluble polymers were synthesized by adjusting the cross-linker concentration. Viscosity measurements showed that the polymer thickening effect strongly depended on the degree of cross-linking. Finally, cross-linking polymerization of acrylic acid in scCO2 was carried out in a continuous stirred tank reactor. The use of cross-linker decreased the monomer conversion in this system.  相似文献   

17.
Polycarbonate/carbon nanotube (CNT) nanocomposites were generated using a supercritical carbon dioxide (scCO2) aided melt blending method, yielding nanocomposites with enhanced electrical properties and improved dispersion while maintaining the aspect ratio of the as-received CNTs. Baytubes® C 150 P CNTs were benignly deagglomerated with scCO2 resulting in 5 fold (5X), 10X and 15X decreases in bulk density from the as-received CNTs. This was followed by melt compounding with polycarbonate to generate the CNT nanocomposites. Electrical percolation thresholds were realized at CNT loading levels as low as 0.83 wt% for composites prepared with 15X CNT using the scCO2 aided melt blending method. By comparison, a concentration of 1.5 wt% was required without scCO2 processing. Optical microscopy, transmission electron microscopy, and rheology were used to investigate the dispersion and mechanical network of CNTs in the nanocomposites. The dispersion of CNTs generally improved with scCO2 processing compared to direct melt blending, but was significantly worse than that of twin screw melt compounded nanocomposites reported in the literature. A rheologically percolated network was observed near the electrical percolation of the nanocomposites. The importance of maintaining longer carbon nanotubes during nanocomposite processing rather than focusing on dispersion alone is highlighted in the current efforts.  相似文献   

18.
The oil and extracts of Satureja hortensis cultivated in Iran were extracted using supercritical carbon dioxide and hydrodistillation method. The oil and extracts were analyzed by GC-FID and GC/MS. The compounds were identified according to their retention indices and mass spectra (EI, 70 eV). The effects of various parameters such as pressure, temperature, percent of modifier (methanol) and extraction time, were investigated by a fractional factorial design (24-1) to determine the significant parameters and their interactions. The results showed that the pressure, temperature and percent of modifier are significant (p < 0.05), but the extraction time was found to be insignificant. The response surface methodology (RSM), based on Box-Behnken design was employed to obtain the optimum conditions of the significant parameters (pressure, temperature and percent of modifier). The optimal conditions could be obtained at a pressure of 35.0 MPa, temperature of 72.6 °C, and 8.6% (v/v) for methanol. The main extracted components using SFE were γ-Terpinene (35.5%), Thymol (18.2%) and Carvacrol (29.7%).  相似文献   

19.
Experimental survival curves of Saccharomyces cerevisiae cells exposed to high pressure carbon dioxide (HPCD) treatments under several constant temperatures (35, 40 and 50 °C), pressures (7.5, 10.0 and 13.0 MPa) and suspended in distilled water with different sodium phosphate monobasic buffer concentrations (0.02, 0.10, 0.20 and 0.40 M) were obtained. The Peleg model was applied to the isobaric and isothermal conditions described by the power law equation log[S(t)] = −btn, where S(t) is the momentary survival ratio and ‘b’ and ‘n’ are the rate and the shape parameters, respectively. The values of the coefficients ‘b’ and ‘n’ were calculated for each experiment at fixed pressure and temperature. For each suspending medium the power law model was proposed to describe the combined effects of pressure and temperature. Taking into account the CO2 solubility as a function of the sodium phosphate monobasic concentration, ‘b’ and ‘n’ were correlated to the CO2 solubility values and temperature. An equation was proposed for ‘b’ as a function of CO2 solubility and temperature while ‘n’ was a weak function of temperature. The resulting equation was much simpler that the one obtained correlating the microbial inactivation to pressure and temperature and, more important, it was independent of the suspending medium. The results indicate that the coupling of carbon dioxide solubility, also predicted with commercial software, and the use of inactivation models referred to solubility and temperature may provide a powerful instrument for the interpretation of microbial inactivation experiments and for the design of HPCD processes and equipments.  相似文献   

20.
Solubility of chlorpheniramine maleate in supercritical carbon dioxide at different temperatures (308–338 K) and pressures (160–400 bar) is measured using static method coupled with gravimetric method. The measured solubility data demonstrated that the solubility of chlorpheniramine maleate was changed between 1.54 × 10−5 and 4.26 × 10−4 based on the mole fraction as the temperature and pressure are changed. The general trend of measured solubility data shows a direct effect of pressure and temperature on the solubility of chlorpheniramine maleate. Finally, the obtained solubilities correlated using four semi-empirical density-based correlations including Mendez Santiago–Teja (MST), Kumar and Johnston (KJ), Bartle et al., and Chrastil models. Although the results of modeling showed that the KJ model leads to the average absolute relative deviation percent (AARD %) of 8.1% which is the lowest AARD %, deviation of other utilized correlations are rather the same.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号