首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The impact of null mutations of the genes for the NGF family of neurotrophins and their receptors was examined among the wide variety of medium to large caliber myelinated mechanoreceptors which have a highly specific predictable organization in the mystacial pad of mice. Immunofluorescence with anti-protein gene product 9.5, anti-200-kDa neurofilament protein (RT97), and anti-calcitonin gene-related product was used to label innervation in mystacial pads from mice with homozygous null mutations for nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), the three tyrosine kinase receptors (trkA, trkB, trkC), and the low-affinity nerve growth factor receptor p75. Specimens were sacrificed at birth and at 1, 2, and 4 weeks for each type of mutation as well as at 11 weeks and 1 year for p75 and trkC mutations, respectively. Our results demonstrate several major concepts about the role of neurotrophins in the development of cutaneous mechanoreceptors that are supplied by medium to large caliber myelinated afferents. First, each of the high-affinity tyrosine kinase receptors, trkA, trkB, and trkC, as well as the low-affinity p75 receptor has an impact on at least one type of mechanoreceptor. Second, consistent with the various affinities for particular trk receptors, the elimination of NGF, BDNF, and NT-3 has an impact comparable to or more complex than the absence of their most specific high-affinity receptors: trkA, trkB, and trkC, respectively. These complexities include potential NT-3 signaling through trkA and trkB to support some neuronal survival. Third, most types of afferents are dependent on a different combination of neurotrophins and receptors for their survival: reticular and transverse lanceolate afferents are dependent upon NT-3, NGF, and trkA; Ruffini afferents upon BDNF and trkB; longitudinal lanceolate afferents upon NGF, trkA, BDNF, and trkB; and Merkel afferents on NGF, trkA, NT-3, trkC, and p75. NT-4 has no obvious detrimental impact on the mechanoreceptor development in the presence of BDNF. Fourth, NT-4 and BDNF signaling through trkB may suppress Merkel innervation and NT-3 signaling through trkC may suppress Ruffini innervation. Finally, regardless of the neurotrophin/receptor dependency for afferent survival and neurite outgrowth, NT-3 has an impact on the formation of all the sensory endings. In the context of these findings, indications of competitive and suppressive interactions that appear to regulate the balance of innervation density among the various sets of innervation were evident.  相似文献   

2.
3.
When the phenotype of neurons in pre- and paravertebral sympathetic ganglia are compared, there are marked differences in NGF dependence, neuropeptide content, connectivity and electrophysiological properties. The trophic interactions that induce these differences are currently poorly understood. One explanation is that prevertebral neurons receive a second neurotrophic signal, other than NGF, from their target of innervation. If this is the case, neurons in the prevertebral ganglia should express another neurotrophin receptor, in addition to the NGF receptor (trkA). To test this prediction, the level of expression of three neurotrophin receptors, trkA, trkB and trkC, were examined in one paravertebral sympathetic ganglia, the SCG, and two prevertebral ganglia, the celiac and superior mesenteric ganglia. It was found that mRNA encoding the full-length form of the trkB receptor was barely expressed in the SCG. Significantly higher levels of full-length trkB mRNA expression were found in the prevertebral ganglia. Ligands of the trkB receptor may, therefore, contribute to the differentiation and/or survival of some prevertebral sympathetic neurons.  相似文献   

4.
The septo-hippocampal cholinergic and GABAergic systems were lesioned with single unilateral injections of kainic acid (KA) into the septum to further characterize the role of these afferents in the regulation of hippocampal brain-derived neurotrophic factor (BDNF) expression. Nearly all cells expressing choline acetyltransferase, trkA or glutamic acid decarboxylase mRNA disappeared in the medial septum 7 days after the neurotoxin administration. The lesion resulted in a complete loss of CA3 pyramidal cells, and robust increases in BDNF mRNA levels in hippocampal granular dentate cells and in the amygdala. There were rapid transient increases of BDNF mRNA levels in the hippocampal formation and cortex. In addition, we found a strong induction of truncated trkB.T1 mRNA receptors in the stratum radiatum and stratum oriens of the CA3 subfield. The prolonged induction of BDNF mRNA levels suggests an important role of this neurotrophin, possibly mediated by truncated trkB receptors, in the regulation of hippocampal plasticity following injury.  相似文献   

5.
The documented trophic actions of the neurotrophins brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5) upon ventral mesencephalic dopamine neurons in vitro and in vivo are presumed to be mediated through interactions with their high-affinity receptors TrkB (for BDNF and NT-4/5) and TrkC (for NT-3). Although both neurotrophin receptor mRNAs have been detected within the rat ventral midbrain, their specific association with mesencephalic dopaminergic cell bodies remains to be elucidated. The present study was performed to determine the precise organization of trkB and trkC mRNAs within rat ventral midbrain and to discern whether the neurotrophin receptor mRNAs are expressed specifically by dopaminergic neurons. In situ hybridization with isotopically labeled cRNA probes showed that trkB and trkC mRNAs were expressed in all mesencephalic dopamine cell groups, including all subdivisions of the substantia nigra and ventral tegmental area, and in the retrorubral field, rostral and caudal linear raphe nuclei, interfascicular nucleus, and supramammillary region. Combined isotopic/nonisotopic double-labeling in situ hybridization demonstrated that virtually all of the tyrosine hydroxylase (the catecholamine biosynthetic enzyme) mRNA-containing neurons in the ventral midbrain also expressed trkB or trkC mRNAs. Additional perikarya within these regions expressed the neurotrophin receptor mRNAs but were not dopaminergic. The present results demonstrate that essentially all mesencephalic dopaminergic neurons synthesize the neurotrophin receptors TrkB and TrkC and thus exhibit the capacity to respond directly to BDNF and NT-3 in the adult midbrain in vivo. Moreover, because BDNF and NT-3 are produced locally by subpopulations of the dopaminergic cells, the present data support the notion that the neurotrophins can influence the dopaminergic neurons through autocrine or paracrine mechanisms.  相似文献   

6.
Using two-site enzyme immunoassays (EIAs), we measured the levels of neurotrophins, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) simultaneously in three brain regions (motor cortex, dentate gyrus and entorhinal cortex) of patients with Alzheimer's disease (AD) and control individuals. Significant differences between the neurotrophin levels of these two groups were found in the different brain regions depending on the neurotrophin. The NGF level in the dentate gyrus of AD patients was higher, whereas the BDNF level in the entorhinal cortex and the NT-3 level in the motor cortex were lower than the corresponding control levels. These results indicate that protein levels of individual neurotrophins in different brain regions are affected differently by AD, and such differential changes may contribute to the complex pathology of AD.  相似文献   

7.
Tyrosine protein kinases trkA, trkB and trkC are signal transduction receptors for a family of neurotrophic factors known as the neurotrophins. Here we report on changes in the expression of messenger RNAs for trkA, trkB and trkC in the brain following an injury caused by insertion of a 30-gauge needle into adult rat hippocampus or neocortex. Quantitative in situ hybridization revealed no change in the level of trkA messenger RNAs in any brain region following this insult. In contrast, increased levels of trkB messenger RNA compared to untreated animals were seen in the granule cell layer of the dentate gyrus ipsilateral to the injury already 30 min after the injury. The increase reached maximal levels (four-fold) between 2 and 4 h, but returned to control levels 8 h after the injury. No change was seen in the contralateral dentate gyrus. The levels of trkC messenger RNA increased in the same brain regions as trkB messenger RNA, though with a delayed response, reaching a maximal increase of 3.3-fold 4 h after the injury. As for trkB messenger RNA, the level of trkC messenger RNA then tapered off and reached control levels 8 h after the injury. However, 4 h after the injury, a 1.7-fold increase of trkB and trkC messenger RNAs were seen in the ipsilateral piriform cortex. The increases of trkB and trkC messenger RNAs were confirmed using a nuclease protection assay. Increases of both trkB and trkC messenger RNAs were also seen in the piriform cortex, but not in the hippocampus, following needle insertion into the neocortex. Pretreatment of the animals with the non-competitive N-methyl-D-aspartate antagonist ketamine completely prevented the increases of trkB and trkC messenger RNAs, suggesting that the brain injury caused a release of glutamate with subsequent activation of N-methyl-D-aspartate receptors. In contrast, the anticonvulsive drug diazepam, the muscarinic antagonist atropine and the calcium-channel antagonist nimodipine had no effect on the increases of trkB and trkC messenger RNAs. Combined with previous data on the expression of neurotrophin messenger RNAs following similar injuries, our results support the hypothesis that increased levels of neurotrophins and their receptors could protect against neuronal damage following a brain insult.  相似文献   

8.
We have studied the postnatal expression of neurotrophins, their cognate high-affinity trk receptors and the low-affinity NGF receptor (p75LNGFR) in the rat adrenal gland using RT-PCR. Neurotrophin mRNAs were detectable during the whole postnatal period. Strongest signals were obtained for BDNF and NT4/5. Expression of trkA, trkB, trkC and p75LNGFR was found at all ages studied. Signals for trkA were highest in the adult adrenal medulla, whereas signals for p75LNGFR were highest in the adult adrenal cortex. Cur data suggest still largely enigmatic roles for neurotrophins in functions of the adrenal medulla and possibly also the cortex.  相似文献   

9.
This study determined in temporal lobe epilepsy patients if there were correlations among hippocampal granule cell expression of neurotrophin mRNAs, aberrant supragranular mossy fiber sprouting, and neuron losses. Consecutive surgically resected hippocampi (n = 9) and comparison tissue from autopsies (n = 3) were studied for: 1. Granule cell mRNA levels using in situ hybridization for brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and neurotrophin-3 (NT-3); 2. neo-Timm supragranular mossy fiber sprouting; and 3. Ammon's horn neuron densities. Clinically, patients were classified into those with hippocampal sclerosis (HS; n = 7) and non-HS cases (i.e., mass lesions and autopsies; n = 5). Results showed that compared to non-HS cases, HS patients showed increased granule cell mRNA levels for BDNF, NGF, and NT-3 (p = 0.035, p = 0.04, p = 0.045 respectively; one-tail directional test). Moreover, granule cell BDNF mRNA levels correlated inversely with Ammon's horn neuron densities (p = 0.02) and correlated positively with greater supragranular mossy fiber sprouting (p = 0.02). NGF mRNA levels correlated inversely with Ammon's horn neuron densities (p = 0.02), and NT-3 mRNA levels correlated inversely with age at surgery (p = 0.04) and correlated positively with greater mossy fiber sprouting (p = 0.026). These results indicate in the chronically damaged human hippocampus that granule cells express neurotrophin mRNAs, and mRNA levels correlate with either hippocampal neuron losses or aberrant supragranular mossy fiber sprouting. These data support the hypothesis that in the epileptic human hippocampus, there may be pathophysiologic associations among mossy fiber synaptic plasticity, hippocampal neuron damage, and granule cell mRNA neurotrophin levels.  相似文献   

10.
The interaction of ethanol and neurotrophin-mediated cell survival was examined in primary cultures of cortical neurons. Cells were obtained from rat fetuses on gestational day 16 and maintained in a medium supplemented with either 10% or 1.0% fetal calf serum (FCS). Exogenous nerve growth factor (NGF; 20 ng/ml), brain-derived neurotrophic factor (BDNF; 20 ng/ml) or neurotrophin 3 (NT-3; 20 ng/ml) was added to the cultures alone, or in combination with ethanol (400 mg/dl). The number of viable neurons was determined after a 48 h treatment with a growth factor and/or ethanol. The effects of ethanol on the expression of high affinity neurotrophin receptors (trkA, trkB, and trkC) and the low-affinity receptor (p75), were analyzed using Western immunoblots. In untreated cultures, 22.7% and 26.3% of the cells raised in a medium containing 10% and 1.0% FCS, respectively, were lost. Only NGF prevented the death of the cultured cortical neurons. Ethanol was toxic; it caused a 23.5% and 16.7% loss of cells (for cells grown in a medium containing 10% and 1.0% FCS, respectively) beyond that occurring 'naturally' in an untreated culture. Ethanol completely blocked the NGF-mediated cell survival. In general, BDNF and NT-3 did not offset the toxic effect of ethanol. Immunoblotting studies showed that the expression of p75 was significantly (p < 0.05) lower (40%) in ethanol-treated cultures, but ethanol did not affect trk expression. Thus, ethanol has specific effects upon NGF-mediated cell survival and the effects on the low affinity receptor imply that p75 specifically plays an important role in NGF signaling.  相似文献   

11.
It has been suggested that degeneration of neurons in Alzheimer's disease is the result of diminished trophic support. However, so far no evidence has been forwarded that neuronal degeneration in Alzheimer's disease is causally related to insufficient production of neurotrophins. The present study deals with (i) the expression and co-localization of tyrosine kinase receptors (trks) in the human nucleus basalis of Meynert and (ii) alterations of these receptors in Alzheimer's disease in the nucleus basalis of Meynert, an area severely affected in Alzheimer's disease. The expression of trkA, trkB and trkC in the nucleus basalis of Meynert of control and Alzheimer's disease brains was studied using three polyclonal antibodies specifically recognizing the extracellular domain of trkA, trkB and trkC. Brain material of eight controls and seven Alzheimer's disease patients was obtained at autopsy, embedded in paraffin and stained immunocytochemically. Using an image analysis system, we determined the proportion of trk neurons expressing the different trk receptors in controls and Alzheimer's disease patients. In control brains, trkA, trkB and trkC were differentially expressed in numerous nucleus basalis of Meynert neurons. The highest proportion of neurons was found to express trkB (75%), followed by trkC (58%) and trkA (54%). Furthermore, using consecutive sections, a clear co-localization of trk receptors was observed in the same neurons. The highest degree of co-localization was observed between trkA and trkB. In Alzheimer's disease patients, the number of immunoreactive neurons and the staining intensity of individual neurons was reduced dramatically. Reduction in the proportion of neurons expressing trkA was 69%, in trkB 47% and in trkC 49%, which indicated a differential reduction in the amount of trk receptors in Alzheimer's disease. These observations indicate that nucleus basalis of Meynert neurons can be supported by more than one neurotrophin and that the degeneration of these neurons in Alzheimer's disease is associated with a decreased expression of trk receptors, suggesting a decreased neurotrophin responsiveness of nucleus basalis of Meynert neurons in Alzheimer's disease.  相似文献   

12.
Following spinal cord injury, projection neurons are frequently axotomized and many of the cells subsequently die. One goal in spinal injury research is to preserve damaged neurons so that ultimately they are accessible to regeneration-promoting strategies. Here we ask if neurotrophin treatment can prevent atrophy and death of axotomized sensory projection neurons. In adult rats, a hemisection was made in the thoracic spinal cord and axotomized neurons were retrogradely labelled with Fluoro-Gold. Four distinct populations of cells were identified in the lumbar spinal cord, and both numbers and sizes of labelled cells were assessed at different time points postlesion. A progressive and significant degeneration was observed over time with severe atrophy apparent in all cell populations and significant cell loss evident by 4 weeks postlesion. This time point was used to assess neurotrophin effects. Hemisected rats were treated with either neurotrophin 3 (NT-3) or brain-derived neurotrophic factor (BDNF, 12 microg/day for each), or a vehicle solution, delivered continuously to the lesion site via an osmotic minipump. Treatment with NT-3, but not BDNF, completely reversed cell atrophy in three of the four cell populations and also induced a significant increase in the number of surviving cells. In situ hybridization experiments showed trkB and trkC mRNA to be expressed in the majority of ascending spinal projection neurons, suggesting that these cells should be responsive to both BDNF and NT-3. However, only NT-3 treatment was neuroprotective, indicating that BDNF may not have reached the cell bodies of injured neurons. These results demonstrate that NT-3 may be of benefit in preventing the secondary cell loss that occurs following spinal injury.  相似文献   

13.
These studies tested the hypothesis that survival-promoting effects of neurotrophins on basal forebrain cholinergic neurons are enhanced under stress. Septal neurons from embryonic day 14-15 rats exposed for 10-14 d to neurotrophin [nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), or neurotrophin-4 (NT-4), each at 100 ng/ml] showed a two- to threefold increase in choline acetyltransferase (ChAT) activity, with little evidence of synergistic interactions. Neurotrophins produced no significant increase in the survival of total or acetylcholinesterase (AChE)-positive neurons at moderate plating density (1200-1600 cells/mm2). However, with very low plating densities (2-28 cells/mm2) BDNF, NT-3, and NT-4 (but not NGF) increased total neuronal survival, and BDNF increased survival of AChE-positive neurons. NGF and BDNF enhanced ChAT activity and survival of cholinergic neurons after a 24 hr hypoglycemic stress, even when added 1 hr after stress onset. All four tested neurotrophins increased total neuronal survival after hypoglycemic stress. These results suggest that neurotrophins are important for preservation of central cholinergic function under stress conditions, with different neurotrophins protecting against different stresses. The stress-associated survival-promoting effects of neurotrophins were not limited to the cholinergic subpopulation.  相似文献   

14.
15.
Neurotrophins (NTFs) are a family of structurally related proteins with specific effects on the developing nervous system and a wide range of non-neuronal differentiating cells. To date, four NTFs have been characterized: nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). To perform their biological effects, the NTFs must bind to appropriate receptors on the surface of responsive cells. High- and low-affinity receptors for NTFs have been identified. The high-affinity receptors are members of the trk protein tyrosine kinase receptor family. The low-affinity neurotrophin receptor gp75NTFR is a common receptor for all NTFs. Here we summarize some of our previous findings on the expression patterns of NGF, gp75NTFR, TrkB, and TrkC in the developing molar tooth of the rat. Both NGF and gp75NTFR are localized in dental epithelium and mesenchyme but often their expression patterns differ. Concomitant expression of NGF and gp75NTFR in mesenchyme is correlated with odontoblast differentiation. The trkB and trkC receptors show distinct cell-specific expression patterns in developing tooth, suggesting that other NTFs, apart from NGF, may be involved in odontogenesis. These data demonstrate that NTFs participate in the cascade of molecular events that direct tooth development, and support the notion that NTFs may have multiple and distinct roles in dental tissues.  相似文献   

16.
17.
18.
Expression of the receptor tyrosine kinase, Trk, determines the specificity of neurotrophin responsiveness of different neuronal populations during development. Recently it has become apparent that sympathetic neurons of rat superior cervical ganglia (SCG) acquire sensitivity to neurotrophin-3 (NT3) before they become dependent on the target-derived nerve growth factor (NGF) for their survival by sequential induction of TrkC and TrkA. The mechanism controlling the expression of TrkC as well as the source of NT3 at their initial developmental stage has, however, not been clarified. Here we show that the treatment of the perinatal rat SCG neurons which express high levels of trkA mRNA with bone morphogenetic protein-2 (BMP2) induced the expression of trkC mRNA. Induction of the functional TrkC receptor by BMP2 was confirmed by the enhancement of the survival response of these neurons to NT3. Treatment of SCG neurons with retinoic acid (RA) promoted the effect of BMP2 on the induction of trkC mRNA levels. BMP2 treatment, on the other hand, promoted the effect of RA on the suppressions of trkA mRNA levels and the NGF-dependent survival of the SCG neurons. Furthermore, BMP2/RA treatment induced the endogenous expression of NT3. These results indicate that specific environmental signals can regulate neurotrophin responsiveness of developing sympathetic neurons by differential alteration of the trk and neurotrophin expressions.  相似文献   

19.
Hypothalamic neurons control a variety of important hormonal and behavioral functions. Little is known, however, about the neurotrophic factors that these neurons may require for survival and/or maintenance of their differentiated functions. We conducted experiments to examine this issue, utilizing a combination of immunohistochemical, in situ hybridization and cell culture approaches. We found that the low affinity receptor for nerve growth factor (p75 NGFR) is present in small subsets of hypothalamic peptidergic neurons identified as such by their content of galanin, luteinizing hormone-releasing hormone (LHRH) and vasointestinal peptide (VIP). More prominently, however, examination of hypothalamic dopaminergic (DA) neurons for the presence of p75 NGFR-like immunoreactivity revealed that the receptor was present on tyrosine hydroxylase (TH)-positive neurons of the zona incerta and periventricular region, but not on neuroendocrine DA neurons of the tuberoinfundibular region. In situ hybridization experiments using a p75 NGFR cRNA confirmed this distribution. Regardless of the presence or absence of p75 NGFR, neither DA group expresses trkA mRNA, indicating that these two major hypothalamic subsets of DNA neurons are NGF-insensitive. A substantial fraction of TH mRNA-positive cells in the zona incerta expresses trkB mRNA, which encodes the receptor for brain derived neurotrophic factor (BDNF); in turn BDNF supports the in vitro survival of hypothalamic TH neurons bearing p75-NGFR, suggesting that BDNF is trophic for DNA neurons of the zona incerta. In contrast, tuberoinfundibular DA neurons do not express trkB mRNA, but some have trkC mRNA, which encodes the receptor for neurotrophin-3 (NT-3). The in vitro survival of TH neurons devoid of p75-NGFR is supported by NT-3, implying that NT-3 may be trophic for a subset of tuberoinfundibular DA neurons. These results suggest that, in spite of expressing an identical neurotransmitter phenotype, anatomically and functionally segregated DA neurons of the neurodendocrine brain are sustained by different neurotrophic factors.  相似文献   

20.
We have studied the effect of retinoic acid on the expression of the neurotrophin receptors trkA, trkC, and p75 by neuroblasts and neurons at different axial levels along the embryonic mouse paravertebral sympathetic chain. In dissociated cultures of sympathetic neuroblasts, retinoic acid inhibited the developmental increase in trkA mRNA expression and the developmental decrease in trkC mRNA expression that normally occurs in these cells but did not affect p75 mRNA expression. At higher concentrations, retinoic acid also increased the proliferation of sympathetic neuroblasts. After sympathetic neuroblasts became postmitotic, retinoic acid no longer affected receptor expression. Studies with retinoic acid receptor agonists and antagonists indicated that the effects of retinoic acid on neurotrophin receptor expression were mediated mainly by alpha retinoic acid receptors, not beta or gamma receptors. The observation that alpha-antagonists increased trkA mRNA expression in intact sympathetic ganglion explants suggests that endogenous retinoic acid is a physiological regulator of trkA receptor expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号