首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibition of Clostridium perfringens germination and outgrowth by salts of organic acids such as sodium lactate, sodium acetate, buffered sodium citrate and buffered sodium citrate supplemented with sodium diacetate was evaluated during continuous chilling of ground turkey. Turkey breast meat was injected with a brine-containing NaCl, potato starch and potassium tetra pyrophosphate to yield final in-product concentrations of 0.85%, 0.25% and 0.20%, respectively. The meat was ground, mixed with either sodium lactate (1%, 2%, 3% or 4%), sodium acetate (1% or 2%), buffered sodium citrate (Ional, 1%) or buffered sodium citrate supplemented with sodium diacetate (Ional Plus trade mark, 1%), in addition to a control that did not contain added antimicrobials. Each product was mixed with a three-strain C. perfringens spore cocktail to obtain final spore concentrations of ca. 2.8 log10 spores/g. Inoculated products (10 g) were packaged into cook-in-bags (2 x 3 in.), vacuum sealed, cooked at 60 degrees C for 1 h, and subsequently chilled from 54.4 to 7.2 degrees C in 15, 18 and 21 h following exponential chilling rates. Products were sampled immediately after cooking and then after chilling. Chilling of cooked turkey following 15, 18 and 21 h chill rates resulted in germination and outgrowth of C. perfringens spores to 6.6, 7.58 and 7.95 log10 CFU/g populations, respectively, from initial spore populations of ca. 2.80 log10 CFU/g. Incorporation of sodium lactate (1%), sodium acetate (1%), Ional or Ional Plus (1%) substantially inhibited germination and outgrowth of C. perfringens spores compared to controls. Final C. perfringens total populations of 3.12, 3.10, 2.38 and 2.92 log10 CFU/g, respectively, were observed following a 15-h exponential chill rate. Similar inhibitory effects were observed for 18 and 21 chill rates with the antimicrobials at 1% concentrations. While sodium lactate and sodium acetate concentrations of 1% were sufficient to control C. perfringens germination and outgrowth (<1.0 log10 CFU/g growth) following 15 h chill rates, higher concentrations were required for 18 and 21 h chill rates. Ional at 1% concentration was effective in inhibiting germination and outgrowth to <1.0 log10 CFU/g of C. perfringens for all three chill rates (15, 18 and 21 h) tested. Use of sodium salts of organic acids in formulation of ready-to-eat meat products can reduce the risk of C. perfringens spore germination and outgrowth during chilling.  相似文献   

2.
The control of Listeria monocytogenes was evaluated with ready-to-eat uncured turkey and cured pork-beef bologna with combinations of benzoate, propionate, and sorbate. Three treatments of each product type were formulated to include control with no antimycotic agents; a combination of 0.05% sodium benzoate and 0.05% sodium propionate; and a combination of 0.05% sodium benzoate and 0.05% potassium sorbate. Ingredients were mixed, stuffed into fibrous, moisture-impermeable casings, cooked to an internal temperature of 73.9 degrees C, chilled, and sliced. The final product was surface inoculated with L. monocytogenes (4 log CFU per package), vacuum packaged, and stored at 4 degrees C for 13 weeks. The antimycotic addition to the second and third uncured turkey treatments initially slowed the pathogen growth rate compared with the control, but populations of L. monocytogenes increased 5 log or more by 6 weeks. In contrast, the addition of antimycotic combinations in the cured bologna prevented growth of L. monocytogenes during the 13-week storage period at 4 degrees C, compared with a more than 3.5-log increase in listerial populations in the control bologna, to which no antimicrobial agents had been added. These data suggest that low concentrations of antimycotic agents can prevent L. monocytogenes growth in certain ready-to-eat meats. Additional research is needed to define the levels needed to prevent growth of L. monocytogenes in high-moisture cured and uncured ready-to-eat meat and poultry and for gaining governmental approval for their use in such formulations.  相似文献   

3.
Inhibition of Clostridium perfringens by plant-derived carvacrol, cinnamaldehyde, thymol, and oregano oil was evaluated during abusive chilling of cooked ground turkey. Test substances were mixed into thawed turkey product at concentrations of 0.1, 0.5, 1.0, or 2.0% (wt/wt) along with a heat-activated three-strain C. perfringens spore cocktail to obtain final spore concentrations of ca. 2.2 to 2.8 log CFU spores per g of turkey meat. Aliquots (5 g) of the ground turkey mixtures were vacuum packaged and then cooked in a water bath, where the temperature was raised to 60 degrees C in I h. The products were cooled from 54.4 to 7.2 degrees C in 12, 15, 18, or 21 h, resulting in 2.9-, 5.5-, 4.9-, and 4.2-log CFU/g increases, respectively, in C. perfringens populations in samples without antimicrobials. Incorporation of test compounds (0.1 to 0.5%) into the turkey completely inhibited C. perfringens spore germination and outgrowth (P < or = 0.05) during exponential cooling in 12 h. Longer chilling times (15, 18, and 21 h) required greater concentrations (0.5 to 2.0%) to inhibit spore germination and outgrowth. Cinnamaldehyde was significantly (P < 0.05) more effective (<1.0-log CFU/g growth) than the other compounds at a lower concentration (0.5%) at the most abusive chilling rate evaluated (21 h). These findings establish the value of the plant-derived antimicrobials for inhibiting C. perfringens in commercial ground turkey products.  相似文献   

4.
Cooked, chilled beef and cooked, chilled pork were inoculated with three strains of Clostridium perfringens (NCTC 8238 [Hobbs serotype 2], NCTC 8239 [Hobbs serotype 3], and NCTC 10240). Inoculated products were heated to 75 degrees C, held for 10 min in a circulating water bath to heat activate the spores, and then chilled by circulating chilled brine through the water bath. Samples were chilled from 54.4 to 26.6 degrees C in 2 h and from 26.6 to 4.4 degrees C in 5 h. Differences in initial C. perfringens log counts and log counts after chilling were determined and compared with the U.S. Department of Agriculture (USDA) stabilization guidelines requiring that the chilling process allow no more than 1 log total growth of C. perfringens in the finished product. This chilling method resulted in average C. perfringens increases of 0.52 and 0.68 log units in cooked beef and cooked pork, respectively. These log increases were well within the maximum 1-log increase permitted by the USDA, thus meeting the USDA compliance guidelines for the cooling of heat-treated meat and poultry products.  相似文献   

5.
A total of 445 whole-muscle and ground or emulsified raw pork, beef, and chicken product mixtures acquired from industry sources were monitored over a 10-month period for vegetative and spore forms of Clostridium perfringens. Black colonies that formed on Shahidi-Ferguson perfringens (SFP) agar after 24 h at 37 degrees C were considered presumptive positive. Samples that were positive after a 15-min heat shock at 75 degrees C were considered presumptive positive for spores. Of 194 cured whole-muscle samples, 1.6% were positive; spores were not detected from those samples. Populations of vegetative cells did not exceed 1.70 log10 CFU/g and averaged 1.56 log10 CFU/g. Of 152 cured ground or emulsified samples, 48.7% were positive, and 5.3% were positive for spores. Populations of vegetative cells did not exceed 2.72 log10 CFU/g and averaged 1.98 log10 CFU/g; spores did not exceed 2.00 log10 CFU/g and averaged 1.56 log10 CFU/g. Raw bologna (70% chicken), chunked ham with emulsion, and whole-muscle ham product mixtures were inoculated with C. perfringens spores (ATCC 12916, ATCC 3624, FD1041, and two product isolates) to ca. 3.0 log10 CFU/g before being subjected either to thermal processes mimicking cooking and chilling regimes determined by in-plant temperature probing or to cooking and extended chilling regimes. Populations of C. perfringens were recovered on SFP from each product at the peak cook temperatures, at 54.4, 26.7, and 7.2 degrees C, and after up to 14 days of storage under vacuum at 4.4 degrees C. In each product, populations remained relatively unchanged during chilling from 54.4 to 7.2 degrees C and declined slightly during refrigerated storage. These findings indicate processed meat products cured with sodium nitrite are not at risk for the growth of C. perfringens during extended chilling and cold storage.  相似文献   

6.
Numerous small meat processors in the United States have difficulties complying with the stabilization performance standards for preventing growth of Clostridium perfringens by 1 log10 cycle during cooling of ready-to-eat (RTE) products. These standards were established by the Food Safety and Inspection Service (FSIS) of the US Department of Agriculture in 1999. In recent years, several attempts have been made to develop predictive models for growth of C. perfringens within the range of cooling temperatures included in the FSIS standards. Those studies mainly focused on microbiological aspects, using hypothesized cooling rates. Conversely, studies dealing with heat transfer models to predict cooling rates in meat products do not address microbial growth. Integration of heat transfer relationships with C. perfringens growth relationships during cooling of meat products has been very limited. Therefore, a computer simulation scheme was developed to analyze heat transfer phenomena and temperature-dependent C. perfringens growth during cooling of cooked boneless cured ham. The temperature history of ham was predicted using a finite element heat diffusion model. Validation of heat transfer predictions used experimental data collected in commercial meat-processing facilities. For C. perfringens growth, a dynamic model was developed using Baranyi's nonautonomous differential equation. The bacterium's growth model was integrated into the computer program using predicted temperature histories as input values. For cooling cooked hams from 66.6 degrees C to 4.4 degrees C using forced air, the maximum deviation between predicted and experimental core temperature data was 2.54 degrees C. Predicted C. perfringens growth curves obtained from dynamic modeling showed good agreement with validated results for three different cooling scenarios. Mean absolute values of relative errors were below 6%, and deviations between predicted and experimental cell counts were within 0.37 log10 CFU/g. For a cooling process which was in exact compliance with the FSIS stabilization performance standards, a mean net growth of 1.37 log10 CFU/g was predicted. This study introduced the combination of engineering modeling and microbiological modeling as a useful quantitative tool for general food safety applications, such as risk assessment and hazard analysis and critical control points (HACCP) plans.  相似文献   

7.
Spores of foodborne pathogens can survive traditional thermal processing schedules used in the manufacturing of processed meat products. Heat-activated spores can germinate and grow to hazardous levels when these products are improperly chilled. Germination and outgrowth of Clostridium perfringens spores in roast beef during chilling was studied following simulated cooling schedules normally used in the processed-meat industry. Inhibitory effects of organic acid salts on germination and outgrowth of C. perfringens spores during chilling and the survival of vegetative cells and spores under abusive refrigerated storage was also evaluated. Beef top rounds were formulated to contain a marinade (finished product concentrations: 1% salt, 0.2% potassium tetrapyrophosphate, and 0.2% starch) and then ground and mixed with antimicrobials (sodium lactate and sodium lactate plus 2.5% sodium diacetate and buffered sodium citrate and buffered sodium citrate plus 1.3% sodium diacetate). The ground product was inoculated with a three-strain cocktail of C. perfringens spores (NCTC 8238, NCTC 8239, and ATCC 10388), mixed, vacuum packaged, heat shocked for 20 min at 75 degrees C, and chilled exponentially from 54.5 to 7.2 degrees C in 9, 12, 15, 18, or 21 h. C. perfringens populations (total and spore) were enumerated after heat shock, during chilling, and during storage for up to 60 days at 10 degrees C using tryptose-sulfite-cycloserine agar. C. perfringens spores were able to germinate and grow in roast beef (control, without any antimicrobials) from an initial population of ca. 3.1 log CFU/g by 2.00, 3.44, 4.04, 4.86, and 5.72 log CFU/g after 9, 12, 15, 18, and 21 h of exponential chilling. A predictive model was developed to describe sigmoidal C. perfringens growth curves during cooling of roast beef from 54.5 to 7.2 degrees C within 9, 12, 15, 18, and 21 h. Addition of antimicrobials prevented germination and outgrowth of C. perfringens regardless of the chill times. C. perfringens spores could be recovered from samples containing organic acid salts that were stored up to 60 days at 10 degrees C. Extension of chilling time to > or =9 h resulted in >1 log CFU/g growth of C. perfringens under anaerobic conditions in roast beef. Organic acid salts inhibited outgrowth of C. perfringens spores during chilling of roast beef when extended chill rates were followed. Although C. perfringens spore germination is inhibited by the antimicrobials, this inhibition may represent a hazard when such products are incorporated into new products, such as soups and chili, that do not contain these antimicrobials, thus allowing spore germination and outgrowth under conditions of temperature abuse.  相似文献   

8.
Inhibition of Clostridium perfringens spore germination and outgrowth by lactic acid salts (calcium, potassium, and sodium) during exponential cooling of injected turkey product was evaluated. Injected turkey samples containing calcium lactate, potassium lactate, or sodium lactate (1.0, 2.0, 3.0, or 4.8% [w/w]), along with a control (product without lactate), were inoculated with a three-strain cocktail of C. perfringens spores to achieve a final spore population of 2.5 to 3.0 log CFU/g. The inoculated product was heat treated and exponentially cooled from 54.5 to 7.2 degrees C within 21, 18, 15, 12, 9, or 6.5 h. Cooling of injected turkey (containing no antimicrobials) resulted in C. perfringens germination and an outgrowth of 0.5, 2.4, 3.4, 5.1, 5.8, and 5.8 log CFU/g when exponentially cooled from 54.4 to 7.2 degrees C in 6.5, 12, 15, 18, and 21 h, respectively. The incorporation of antimicrobials (lactates), regardless of the type (Ca, Na, or K salts), inhibited the germination and outgrowth of C. perfringens spores at all the concentrations evaluated (1.0, 2.0, 3.0, and 4.8%) compared to the injected turkey without acetate (control). Increasing the concentrations of the antimicrobials resulted in a greater inhibition of the spore germination and outgrowth in the products. In general, calcium lactate was more effective in inhibiting the germination and outgrowth of C. perfringens spores at > or = 1.0% concentration than were sodium and potassium lactates. Incorporation of these antimicrobials in cooked, ready-to-eat turkey products can provide additionalprotection in controlling the germination and outgrowth of C. perfringens spores during cooling (stabilization).  相似文献   

9.
Inhibition of Clostridium perfringens spore germination and outgrowth by carvacrol, cinnamaldehyde, thymol, and oregano oil was evaluated during abusive chilling of cooked ground beef (75% lean) obtained from a local grocery store. Test substances were mixed into thawed ground beef at concentrations of 0.1, 0.5, 1.0, or 2.0% (wt/wt) along with a heat-activated three-strain C. perfringens spore cocktail to obtain final spore concentrations of ca. 2.8 log spores per g. Aliquots (5 g) of the ground beef mixtures were vacuum-packaged and then cooked in a water bath, the temperature of which was raised to 60 degrees C in 1 h. The products were cooled from 54.4 to 7.2 degrees C in 12, 15, 18, or 21 h, resulting in 3.18, 4.64, 4.76, and 5.04 log CFU/ g increases, respectively, in C. perfringens populations. Incorporation of test compounds (> or = 0.1%) into the beef completely inhibited C. perfringens spore germination and outgrowth (P < or = 0.05) during exponential cooling of the cooked beef in 12 h. Longer chilling times (15, 18, and 21 h) required greater concentrations to inhibit spore germination and outgrowth. Cinnamaldehyde was significantly (P < 0.05) more effective (< 1.0 log CFU/g growth) at a lower concentration (0.5%) at the most abusive chilling rate evaluated (21 h) than the other compounds. Incorporation of lower levels of these test compounds with other antimicrobials used in meat product formulations may reduce the potential risk of C. perfringens germination and outgrowth during abusive cooling regimes.  相似文献   

10.
The Food Safety and Inspection Service (FSIS) conducted microbiological testing programs for ready-to-eat (RTE) meat and poultry products produced at approximately 1,800 federally inspected establishments. All samples were collected at production facilities and not at retail. We report results here for the years 1990 through 1999. Prevalence data for Salmonella, Listeria monocytogenes, Escherichia coli O157:H7, or staphylococcal enterotoxins in nine different categories of RTE meat and poultry products are presented and discussed. The prevalence data have certain limitations that restrict statistical inferences, because these RTE product-testing programs are strictly regulatory in nature and not statistically designed. The cumulative 10-year Salmonella prevalences were as follows: jerky, 0.31%; cooked, uncured poultry products, 0.10%; large-diameter cooked sausages, 0.07%; small-diameter cooked sausages, 0.20%; cooked beef, roast beef, and cooked corned beef, 0.22%; salads, spreads, and patés, 0.05%; and sliced ham and luncheon meat, 0.22%. The cumulative 3-year Salmonella prevalence for dry and semidry fermented sausages was 1.43%. The cumulative 10-year L. monocytogenes prevalences were as follows: jerky, 0.52%; cooked, uncured poultry products, 2.12%; large-diameter cooked sausages, 1.31%; small-diameter cooked sausages, 3.56%; cooked beef, roast beef, and cooked corned beef, 3.09%; salads, spreads, and patés, 3.03%; and sliced ham and luncheon meat, 5.16%. The cumulative 3-year L. monocytogenes prevalence for dry and semidry fermented sausages was 3.25%. None of the RTE products tested for E. coli O157:H7 or staphylococcal enterotoxins was positive. Although FSIS and the industry have made progress in reducing pathogens in these products, additional efforts are ongoing to continually improve the safety of all RTE meat and poultry products manufactured in federally inspected establishments in the United States.  相似文献   

11.
It is unclear how rapidly meat products, such as bacon, that have been heat treated but not fully cooked should be cooled to prevent the outgrowth of spore-forming bacterial pathogens and limit the growth of vegetative cells. Clostridium perfringens spores and vegetative cells and Staphylococcus aureus cells were inoculated into ground cured pork bellies with and without 1.25% liquid smoke. Bellies were subjected to the thermal profiles of industrial smoking to 48.9 degrees C (120 degrees F) and normal cooling of bacon (3 h) as well as a cooling phase of 15 h until the meat reached 7.2 degrees C (45 degrees F). A laboratory-scale bacon smoking and cooling operation was also performed. Under normal smoking and cooling thermal conditions, growth of C. perfringens in ground pork bellies was <1 log regardless of smoke. Increase of S. aureus was 2.38 log CFU/g but only 0.68 log CFU/g with smoke. When cooling spanned 15 h, both C. perfringens and S. aureus grew by a total of about 4 log. The addition of liquid smoke inhibited C. perfringens, but S. aureus still achieved a 3.97-log increase. Staphylococcal enterotoxins were detected in five of six samples cooled for 15 h without smoke but in none of the six samples of smoked bellies. In laboratory-scale smoking of whole belly pieces, initial C. perfringens populations of 2.23 +/- 0.25 log CFU/g were reduced during smoking to 0.99 +/- 0.50 log CFU/g and were 0.65 +/- 0.21 log CFU/g after 15 h of cooling. Populations of S. aureus were reduced from 2.00 +/- 0.74 to a final concentration of 0.74 +/- 0.53 log CFU/g after cooling. Contrary to findings in the ground pork belly system, the 15-h cooling of whole belly pieces did not permit growth of either pathogen. This study demonstrates that if smoked bacon is cooled from 48.9 to 7.2 degrees C (120 to 45 degrees F) within 15 h, a food safety hazard from either C. perfringens or S. aureus is not likely to occur.  相似文献   

12.
Clostridium perfringens type A is a significant public health threat and its spores may germinate, outgrow, and multiply during cooling of cooked meats. This study applies a new C. perfringens growth model in the USDA Integrated Pathogen Modeling Program‐Dynamic Prediction (IPMP Dynamic Prediction) Dynamic Prediction to predict the growth from spores of C. perfringens in cooked uncured meat and poultry products using isothermal, dynamic heating, and cooling data reported in the literature. The residual errors of predictions (observation–prediction) are analyzed, and the root‐mean‐square error (RMSE) calculated. For isothermal and heating profiles, each data point in growth curves is compared. The mean residual errors (MRE) of predictions range from –0.40 to 0.02 Log colony forming units (CFU)/g, with a RMSE of approximately 0.6 Log CFU/g. For cooling, the end point predictions are conservative in nature, with an MRE of –1.16 Log CFU/g for single‐rate cooling and –0.66 Log CFU/g for dual‐rate cooling. The RMSE is between 0.6 and 0.7 Log CFU/g. Compared with other models reported in the literature, this model makes more accurate and fail‐safe predictions. For cooling, the percentage for accurate and fail‐safe predictions is between 97.6% and 100%. Under criterion 1, the percentage of accurate predictions is 47.5% for single‐rate cooling and 66.7% for dual‐rate cooling, while the fail‐dangerous predictions are between 0% and 2.4%. This study demonstrates that IPMP Dynamic Prediction can be used by food processors and regulatory agencies as a tool to predict the growth of C. perfringens in uncured cooked meats and evaluate the safety of cooked or heat‐treated uncured meat and poultry products exposed to cooling deviations or to develop customized cooling schedules. This study also demonstrates the need for more accurate data collection during cooling.  相似文献   

13.
The popularity of "preservative-free" foods among consumers has stimulated rapid growth of processed meats manufactured without sodium nitrite. The objective of this study was to quantify the potential for Clostridium perfringens growth in commercially available processed meats manufactured without the direct addition of nitrite or nitrate. Commercial brands of naturally cured, no-nitrate-or-nitrite-added frankfurters (10 samples), hams (7 samples), and bacon (9 samples) were obtained from retail stores and challenged with a three-strain inoculation (5 log CFU/g) of C. perfringens. Reduced inhibition (P < 0.05) was observed in seven brands of frankfurters, six brands of hams, and four brands of bacon when compared with each respective sodium nitrite-added control. In naturally cured and truly uncured commercial frankfurters, growth over time was approximately 4.7 log, while conventionally cured frankfurters exhibited growth at 1.7 log. Naturally cured ham and bacon products exhibited growth at 4.8 and 3.4 log, respectively, while their conventionally cured counterparts exhibited growth at 2.6 and 2.3 log, respectively. These products also demonstrated variation in growth response. The results indicate that commercially available natural/organic naturally cured meats have more potential for growth of this pathogen than do conventionally cured products. Natural and organic processed meats may require additional protective measures in order to consistently provide the level of safety from bacterial pathogens achieved by conventionally cured meat products, and which is expected by consumers.  相似文献   

14.
ABSTRACT:  We investigated the inhibition of Clostridium perfringens spore germination and outgrowth by the biopolymer chitosan during abusive chilling of cooked ground beef (25% fat) and turkey (7% fat) obtained from a retail store. Chitosan was mixed into the thawed beef or turkey at concentrations of 0.5%, 1.0%, 2.0%, or 3.0% (w/w) along with a heat-activated 3-strain spore cocktail to obtain a final spore concentration of 2 to 3 log10 CFU/g. Samples (5 g) of the ground beef or turkey mixtures were then vacuum-packaged and cooked to 60 °C in 1 h in a temperature-controlled water bath. Thereafter, the products were cooled from 54.4 to 7.2 °C in 12, 15, 18, or 21 h, resulting in 4.21, 4.51, 5.03, and 4.70 log10 CFU/g increases, respectively, in C. perfringens populations in the ground beef control samples without chitosan. The corresponding increases for ground turkey were 5.27, 4.52, 5.11, and 5.38 log10 CFU/g. Addition of chitosan to beef or turkey resulted in concentration- and time-dependent inhibition in the C. perfringens spore germination and outgrowth. At 3%, chitosan reduced by 4 to 5 log10 CFU/g C. perfringens spore germination and outgrowth ( P ≤ 0.05) during exponential cooling of the cooked beef or turkey in 12, 15, or 18 h. The reduction was significantly lower ( P < 0.05) at a chilling time of 21 h, about 2 log10 CFU/g, that is, 7.56 log10 CFU/g (unsupplemented) compared with 5.59 log10 CFU/g (3% chitosan). The results suggest that incorporation of 3% chitosan into ground beef or turkey may reduce the potential risk of C. perfringens spore germination and outgrowth during abusive cooling from 54.4 to 7.2 °C in 12, 15, or 18 h.  相似文献   

15.
The effect of heating rate on the heat resistance, germination, and outgrowth of Clostridium perfringens spores during cooking of cured ground pork was investigated. Inoculated cured ground pork portions were heated from 20 to 75°C at a rate of 4, 8, or 12°C/h and then held at 75°C for 48 h. No significant differences (P > 0.05) in the heat resistance of C. perfringens spores were observed in cured ground pork heated at 4, 8, or 12°C/h. At heating rates of 8 and 12°C/h, no significant differences in the germination and outgrowth of spores were observed (P > 0.05). However, when pork was heated at 4°C/h, growth of C. perfringens occurred when the temperature of the product was between 44 and 56°C. In another set of experiments, the behavior of C. perfringens spores under temperature abuse conditions was studied in cured and noncured ground pork heated at 4°C/h and then cooled from 54.4 to 7.2°C within 20 h. Temperature abuse during cooling of noncured ground pork resulted in a 2.8-log CFU/g increase in C. perfringens. In cured ground pork, C. perfringens decreased by 1.1 log CFU/g during cooling from 54.4 to 36.3°C and then increased by 0.9 log CFU/g until the product reached 7.2°C. Even when the initial level of C. perfringens spores in cured ground pork was 5 log CFU/g, the final counts after abusive cooling did not exceed 3.4 log CFU/g. These results suggest that there is no risk associated with C. perfringens in cured pork products under the tested conditions.  相似文献   

16.
A mathematical model was developed to predict time to inactivation (TTI) by high pressure processing of Listeria monocytogenes in a broth system (pH 6.3) as a function of pressure (450 to 700 MPa), inoculum level (2 to 6 log CFU/ml), sodium chloride (1 or 2%), and sodium lactate (0 or 2.5%) from a 4°C initial temperature. Ten L. monocytogenes isolates from various sources, including processed meats, were evaluated for pressure resistance. The five most resistant strains were used as a cocktail to determine TTI and for model validation. Complete inactivation of L. monocytogenes in all treatments was demonstrated with an enrichment method. The TTI increased with increasing inoculum level and decreasing pressure magnitude, from 1.5 min at 700 MPa and 2 log CFU/ml, to 15 min at 450 MPa and 6 log CFU/ml. Neither NaCl nor sodium lactate significantly influenced TTI. The model was validated with ready-to-eat, uncured, Australian retail poultry products, and with product specially made at a U.S. Department of Agriculture, Food Safety and Inspection Service (FSIS)-inspected pilot plant in the United States. Data from the 210 individual product samples used for validation indicate that the model gives "fail-safe" predictions (58% with response as expected, 39% with no survivors where survivors expected, and only 3% with survivors where none were expected). This model can help manufacturers of refrigerated ready-to-eat meats establish effective processing criteria for the use of high pressure processing as a postlethality treatment for L. monocytogenes in accordance with FSIS regulations.  相似文献   

17.
The antilisterial efficacy and organoleptic impact of an octanoic acid (OA)-based treatment for ready-to-eat (RTE) meat and poultry products were investigated. Whole-muscle and comminuted RTE products were inoculated with a five-strain mixture of Listeria monocytogenes. The OA treatments were applied to the surface of RTE products by dispensing a specific volume of solution directly into the final package prior to vacuum sealing. Once sealed, the vacuum-packaged RTE products containing OA were immersed in water heated to 93.3 degrees C (200 degrees F) for 2 s to effect adequate film shrinkage. Extending the time at which the packaged, treated RTE products were exposed to water heated to 93.3 degrees C was also evaluated with a commercial cascading shrink tunnel fitted with a modified drip pan. Once treated, RTE products were examined for survivor populations of L. monocytogenes after 24 h of storage at 5 degrees C. Sensory evaluation was conducted with a 60-member trained panel on 11 uninoculated, treated RTE products. The OA treatment of RTE products reduced L. monocytogenes numbers to between 0.85 log CFU per sample (oil-browned turkey) and 2.89 log CFU per sample (cured ham) when compared with controls. The antilisterial activity of OA was improved by increasing the duration of the heat shrink exposure. Specifically, reductions of L. monocytogenes ranged from 1.46 log CFU per sample (oil-browned turkey) to 3.34 log CFU per sample (cured ham). Results from the sensory evaluation demonstrated that 10 of the 11 treated RTE products were not perceived as different (P < or = 0.05) from the untreated controls. Panelists detected reduced (P < or = 0.05) smoke flavor intensity with treated mesquite turkey, although the treated product was viewed as acceptable. Results demonstrate the effectiveness of OA as a postlethality treatment meeting U.S. Food Safety and Inspection Service regulatory guidelines for RTE meat and poultry products with minimal impact on sensory quality.  相似文献   

18.
Inhibition of the germination and outgrowth of Clostridium perfringens by buffered sodium citrate (Ional) and buffered sodium citrate supplemented with sodium diacetate (Ional Plus) during the abusive chilling of roast beef and injected pork was evaluated. Beef top rounds or pork loins were injected with a brine containing NaCl, potato starch, and potassium tetrapyrophosphate to yield final in-product concentrations of 0.85, 0.25, and 0.20%, respectively. Products were ground and mixed with Ional or Ional Plus at 0, 0.5, 1.0, and 2.0%. Each product was mixed with a three-strain C. perfringens spore cocktail to obtain final spore concentrations of ca. 2.5 log10 spores per g. Chilling of roast beef from 54.4 to 7.2 degrees C resulted in C. perfringens population increases of 1.51 and 5.27 log10 CFU/g for 18- and 21-h exponential chill rates, respectively, while chilling of injected pork resulted in increases of 3.70 and 4.41 log10 CFU/g. The incorporation of Ional into the roast beef formulation resulted in C. perfringens population reductions of 0.98, 1.87, and 2.47 log10 CFU/g with 0.5, 1.0, and 2.0% Ional, respectively, over 18 h of chilling, while > or = 1.0% Ional Plus was required to achieve similar reductions (reductions of 0.91 and 2.07 log10 CFU/g were obtained with 1.0 and 2.0% Ional Plus, respectively). An Ional or Ional Plus concentration of > or = 1.0% was required to reduce C. perfringens populations in roast beef or injected pork chilled from 54.4 to 7.2 degrees C in 21 h. Cooling times for roast beef or injected pork products after heat processing can be extended to 21 h through the incorporation of > or = 1.0% Ional or Ional Plus into the formulation to reduce the potential risk of C. perfringens germination and outgrowth.  相似文献   

19.
The survival of Listeria monocytogenes was evaluated on 15 ready-to-eat meat products made using drying, fermentation, and/or smoking. The products were obtained from six processors and included summer sausage, smoked cured beef, beef jerky, snack stick, and pork rind and crackling products. The water activity of the products ranged from 0.27 (pork rinds and cracklings) to 0.98 (smoked cured beef slices). Products were inoculated with a five-strain cocktail of L. monocytogenes, repackaged under either vacuum or air, and then stored either at room temperature (21degrees C) or under refrigeration (5 degrees C) for 4 to 11 weeks. Numbers of L. monocytogenes fell for all products during storage, ranging from a decrease of 0.8 log CFU on smoked cured beef slices during 11 weeks under vacuum at 5 degrees C to a decrease of 3.3 log CFU on a pork rind product stored 5 weeks under air at 21degrees C. All of the products tested could be produced under alternative 2 of the U.S. Department of Agriculture regulations mandating control of L. monocytogenes on ready-to-eat meat and poultry products. For many of the products, 1 week of postprocessing storage prior to shipment would act as an effective postlethality treatment and would allow processors to operate under alternative I of these regulations.  相似文献   

20.
Glutamic-oxaloacetic transaminase (GOT) activities in chicken and turkey thigh and breast meat samples, thermally processed at 60–84°C in a model heat-treating system, were evaluated for use as indicators of end-point cooking temperatures (EPT). Wings, breasts, thighs and legs from commercially cooked, whole, roasted chickens and commercially processed products containing chicken and turkey meat were analyzed also to determine if residual GOT activities would indicate compliance with recent FDA/FSIS EPT recommendations. Activities of samples processed in the model system decreased logarithmically with increasing temperatures. GOT activities were higher (P < 0·05) in thigh meat than breast meat in both chicken and turkey samples; activities were higher in turkey than chicken. GOT values for chicken thigh and breast meat at 74°C, the FDA/FSIS recommended EPT for use by food handlers and retailers, were 735 and 164 Sigma-Frankel units ml?1 (SFU ml?1), respectively. Values for turkey thigh and breast meat at this temperature were 1080 and 450 SFU ml?1, respectively. The range of activities was 7–13 SFU ml?1 in commercially prepared chicken products and 27–161 SFU ml?1 in turkey products. Analysis of these products showed adequate cooking and compliance with FDA/FSIS recommended EPT for retail sale. These data indicate that residual GOT activity in processed poultry has potential for use as an indicator of EPT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号