首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Jan  J.-Y. Kuo  T.-M. 《Electronics letters》2005,41(18):991-993
A novel CPW-fed wideband planar monopole antenna with a symmetrically slope ground plane is proposed. By choosing the suitable slope angle of this symmetrically slope ground plane, wideband operation can be obtained. From the experimental results, the operating mode has an impedance bandwidth of about 1162 MHz (1700-2862 MHz) that covers the DCS band (1710-1880 MHz), PCS band (1850-1990 MHz), 3G band (1920-2170 MHz), and Bluetooth band (2400-2483 MHz). The proposed antenna within these operating bands has similar monopole-like radiation patterns. It is suitable for application to wireless communication systems with its relatively low profile.  相似文献   

2.
This communication describes a novel design of circularly-polarized (CP) monopole antenna for dual-band performance. The proposed design offers an impedance bandwidth (IBW) of 3.7 GHz in the frequency range 2.9–6.6 GHz in the lower band and 1 GHz (7.7–8.7 GHz) in the upper band. Proposed antenna has a wide CP (3 dB axial-ratio) bandwidth of 2.42 GHz (46.6%) in lower band (4.08–6.5 GHz) and 300 MHz in upper frequency band (8.1–8.4 GHz). The CP bandwidth is achieved through dual orthogonal arms and slanting edge defected ground structure (DGS). Proposed antenna is suitable for the C-Band wireless applications including WLAN, Wi-MAX communication systems.  相似文献   

3.
In this paper, a ultra-wideband slot antenna is proposed and developed for multi-band wireless communication applications. The radiating slot is fed by a microstrip line with a microstrip fork shaped tuning stub and backed by a finite metallic reflector. The frequency characteristic and radiation performance of the proposed antenna are successfully optimized and the related prototypes are fabricated and tested. The measured results show that the impedance bandwidth can cover the band from 1.85 to 6.1 GHz with return loss of better than 10 dB. The obtained patterns display a high gain and uni-directional radiation patterns within interested bands. With these features, the proposed structure is suitable for application in wireless communication systems, where a single antenna is needed to operate at multi-bands simultaneously, such as PCS (1.85–1.99 GHz), UMTS (1.92–2.17 GHz) and all WLAN bands (2.4–2.48 GHz, and IEEE802.11a WLAN applications: 5.15–5.35 and 5.725–5.825 GHz).  相似文献   

4.
A miniaturized triple‐band antenna suitable for wireless USB dongle applications is proposed and investigated in this paper. The presented antenna, simply consisting of a circular‐arc‐shaped stub, an L‐shaped stub, a microstrip feed line, and a rectangular ground plane has a compact size of and is capable of generating three separate resonant modes with very good impedance matching. The measurement results show that the antenna has several impedance bandwidths for of 260 MHz (2.24 GHz to 2.5 GHz), 320 MHz (3.4 GHz to 3.72 GHz), and 990 MHz (5.1 GHz to 6.09 GHz), which can be applied to both 2.4/5.2/5.8 GHz WLAN bands and 3.5/5.5 GHz WiMAX bands. Moreover, nearly‐omni‐directional radiation patterns and stable gain across the operating bands can be obtained.  相似文献   

5.
设计一种双频宽带多输入多输出(MIMO)天线。天线采用微带线耦合馈电,在天线的表面开有圆环形缝隙,把宽缝隙和窄缝隙结合到一起,因此在辐射体上同时存在2种缝隙结构;天线采用双面结构,带宽范围为1.7~2.33 GHz和3.2~3.9 GHz,2个频带的带宽分别为630 MHz和700 MHz,可用于移动通信的DCS(1 710~1 880 MHz)、PCS(1 850~1 990 MHz)、UMTS(1 920~2 170 MHz)以及WIMAX(3.3~3.6 GHz)。天线在低频段的最大增益为3.6 dB,在高频段的最大增益为5.1 dB,隔离度在-20 dB以下,符合MIMO天线的设计需求。  相似文献   

6.
A novel compact microstrip fed dual-band coplanar antenna for wireless local area network is presented. The antenna comprises of a rectangular center strip and two lateral strips printed on a dielectric substrate and excited using a 50 Omega microstrip transmission line. The antenna generates two separate resonant modes to cover 2.4/5.2/5.8 GHz WLAN bands. Lower resonant mode of the antenna has an impedance bandwidth (2:1 VSWR) of 330 MHz (2190-2520 MHz), which easily covers the required bandwidth of the 2.4 GHz WLAN, and the upper resonant mode has a bandwidth of 1.23 GHz (4849-6070 MHz), covering 5.2/5.8 GHz WLAN bands. The proposed antenna occupy an area of 217 mm2 when printed on FR4 substrate (epsivr=4.7). A rigorous experimental study has been conducted to confirm the characteristics of the antenna. Design equations for the proposed antenna are also developed  相似文献   

7.
Huang  C.-Y. Chiu  P.-Y. 《Electronics letters》2005,41(21):1154-1155
A printed dual-band C-shaped monopole antenna with a shorted parasitic element is proposed. The proposed antenna can provide two separate impedance bandwidths of 156 MHz (about 6.4% centred at 2.45 GHz) and 2048 MHz (about 37% centred at 5.5 GHz), making it easily cover the required bandwidths for wireless local area network (WLAN) operation in the 2.4 GHz band (about 3.4% bandwidth required) and 5.2/5.8 GHz bands (about 13% bandwidth required). Furthermore, the proposed antenna shows a low-profile of 635 mm above the ground plane. Details of the proposed antenna design and experimental results are presented and discussed.  相似文献   

8.
A novel multiband planar inverted-F antenna (PIFA) covering ten frequency bands has been proposed for personal wireless communications terminals. The design is based on the combination of various techniques that are used for designing multiband/broadband antennas. We used a shorted parasitic patch efficiently coupled to the driven patch, a quarter-wave resonator connected to the feed strip in parallel with the main patch, and four slits in the main radiator to excite various current modes in the antenna structure. The antenna is designed within a volume of 4.0 times 2.0 times 0.8 cm3 and it can be used to serve the following wireless communication systems: Global System for Mobile Communications (GSM-900), Digital Communications System (DCS), Personal Communication Service (PCS), Universal Mobile Telecommunications System (UMTS), WiBro at 2.35 GHz, Bluetooth, Satellite-Digital Multimedia Broadcasting (SDM-B) at 2.65 GHz, WiMAX at 3.5 GHz, and the two bands (5.15-5.35 GHz and 5.725-5.875 GHz) for the wireless Local Area Network (WLAN) standards. A prototype antenna was fabricated and tested for input reflection coefficient and radiation performances. The measured and simulated results have been presented and discussed. Important geometrical parameters determining the multiband performances of the antenna have been explained in the paper.  相似文献   

9.
Dual-frequency operation of antenna has become a necessity for many applications in recent wireless communication systems, such as GPS, GSM services each operating at two different frequency bands. A new technique to achieve dual band operation from different types of microstrip antennas is presented here. An evolutionary design process using a particle swarm optimization (PSO) algorithm in conjunction with the method of moments (MoM) is employed effectively to obtain the geometric parameters of the antenna performance. In this article a PSO based on IE3D®? method is used to design dual band inset feed microstrip antenna. Maximum return loss is obtained at 2.4 GHz is ?43.95 dB and at 3.08 GHz is ?27.4 dB. Its bandwidth, of 33.54 MHz, ranges from 2.38355 GHz to 2.41709 GHz. Simulated and experimental results of the antenna are discussed.  相似文献   

10.
利用互补开口谐振环(CSRR)结构提出了一种新型极化可重构微带天线。将CSRR 和一个PIN 二极管开关加载在天线的地板上,通过控制二极管开关的状态,可以实现左旋圆极化和线极化之间的切换,无需额外的偏置电路。利用仿真软件分析了CSRR 的尺寸和位置对天线圆极化特性的影响。所设计的天线工作在5. 8GHz 频段范围,测试结果与仿真结果吻合较好。实验结果表明,在圆极化状态下,中心频率5. 77GHz,-10dB 阻抗带宽约360MHz,最小轴比为1. 5dB,3dB 轴比带宽为80MHz;线极化状态下,中心频率5. 72GHz,-10dB 阻抗带宽约200MHz。天线增益均为6dB 左右,具有良好的方向性,可用于现代无线通信系统中。  相似文献   

11.
A circular slot antenna fed by a coplanar waveguide (CPW) is proposed for dual-band operations. Dual frequency bands that cover the 2.4 GHz (2400-2484 MHz) and 5 GHz (5150-5825 MHz) bands were obtained by embedding a pair of slits in the circular back-patch that is printed on the backside of the substrate and concentric with the circular slot. This design resulted in broadside far-field patterns with low cross-polarisation levels in both frequency bands and a small antenna size of 40/spl times/40 mm with the ground plane regarded as part of the antenna structure.  相似文献   

12.
Compact integrated diversity antenna for wireless communications   总被引:6,自引:0,他引:6  
We introduce a compact integrated antenna that has two feed ports with more than 20 dB isolation between them. The significance of the design is that it can be utilized in compact wireless communication handsets to provide diversity signals or act as a duplexer allowing the receive and transmit signals to be well isolated. The antenna design is based on merging two patch antennas together in combination with capacitive loading so that a compact design can be obtained. Justification for the design is provided by considering the mutual coupling using the reaction principle and finite-dimensional time-domain (FDTD) simulations. Experimental results are also presented for a design that operates in the 2100-2200 MHz band for possible application in forthcoming third-generation wireless systems. Results include radiation patterns, S-parameters, and signal correlations between ports so that the diversity performance and isolation characteristics of the antenna can be demonstrated. These show that in typical wireless environments envelope cross correlations of less than 0.1 between the ports are obtained  相似文献   

13.
机/车载多体制通信、测控、探测等多无线系统并存,天线林立,天线间耦合干扰严重,同时与高速机/车薄壁外壳共形的天线还需具有较强承载能力.本文设计了一种适于车壳共形的低剖面可承载双频共口径定向圆极化缝隙天线.天线主体采用开口缝隙的形式来实现天线的小型化和宽带设计,利用微带线来进行耦合馈电.通过在低频天线中心开槽嵌入高频天线...  相似文献   

14.
A printed small size (12×16.5 mm) ACS-fed e-shaped uniplanar antenna is proposed for dual band applications. The multiband operating characteristics have been achieved by integrating e-shaped radiating strips to the 50ΩACSfeed line. Two simultaneously operating wide bands have been generated by using optimized radiating branch strips for the multiband applications. For obtaining size reduction and wider impedance bandwidth, e-shaped meandered elements are chosen in the design. The proposed design features the bandwidth (VSWR < 2, reflection coefficient below–10 dB) of 100 MHz in 2.4–2.5 GHz, and 2100MHzin 4.0–6.1 GHz. The developed multiband antenna can be useful for several wireless communication applications, such as 2.4 GHz Bluetooth/RFID,WLAN(2.4/5.2/5.8 GHz), WiMAX (5.5 GHz), US public safety band (4.9 GHz), ISM band, radio frequency energy harvesting and internet of things (IoT) applications.  相似文献   

15.
A compact and low-profile patch antenna with a simple structure is presented for the wireless local-area network (WLAN) and the wireless access in the vehicular environment (WAVE) applications. The proposed antenna with an overall size of only 23 mm × 25 mm is fed by a coplanar waveguide (CPW), and yields 10-dB impedance bandwidths of about 250 MHz centered at 2.44 GHz and of about 22% ranging from 5.13 to 6.38 GHz suitable for the WLAN 2.4/5.2/5.8 GHz and the WAVE 5.9 GHz (IEEE 802.11p) applications. Also, good dipole-like patterns and high average antenna gain of ≥2.3 dBi over the operating bands have been obtained. In this design, resonance can be effectively controlled by simply tuning the shaped slots on the patch. Mechanism of mode excitations and effect of the added slot's length on resonance for the proposed antenna are examined and discussed in detail. The experimental results have validated the proposed design as useful for modern mobile communication.  相似文献   

16.
Modern personal communication handsets are shrinking in size and are required to operate at multiple frequency bands for enhanced functionality and performance. This poses an important challenge for antenna designers to build multiband antennas within the limited allowable space. In this paper, an internal antenna covering seven frequency bands is presented for personal communication handsets. The proposed antenna operates at GSM (880-960 MHz), DCS (1710-1880 MHz), PCS (1880-1990 MHz), UMTS (1900-2170 MHz), WiBro (2300-2390 MHz), Bluetooth (2.4-2.48 GHz), and WLAN (5.0-5.5 GHz) frequency bands. Measured input return loss of the antenna is better than dB at all the frequency bands with reasonable radiation performance. Antenna volume is 30 mm times15 mm times 4.0 mm (1.8 cm) that makes it attractive for modern multiband and multifunctional slim handsets.  相似文献   

17.
In this paper, the slot loaded microstrip antenna has been developed with Sierpinski gasket technique. The proposed Modified Square Sierpinski Gasket (MSSG) fractal antenna involves a square patch utilizing Sierpinski gasket (triangular) structure. Four triangular slots are loaded at each iteration. The structure is then simulated using commercially available Ansoft HFSS simulator. The multi-band operation has been achieved by the proposed antenna at 15.915 GHz, 20.045 GHz, 23.077 GHz, 27.77 GHz frequencies with −20 dB, −25 dB, −22 dB, −28 dB return loss respectively which works well for Ku (12–18 GHz) and K (18–27 GHz) band. The consistent result is obtained after simulation and the validity of fabricated design is checked by the measured result. The designed antenna is an attractive candidate for applications like wireless multi-band communication systems.  相似文献   

18.
Liu  W.-C. Chen  J.-K. 《Electronics letters》2009,45(18):929-931
By using twin stepped-patch radiators and a protruded ground, a micro-strip-fed monopole antenna with wide dual-band operation can be obtained. The proposed antenna with an overall size of 32 times 25 mm can excite resonances at the 2.61 and 5.52 GHz bands with impedance bandwidths of 710 MHz (2.32-3.03 GHz) and 1.56 GHz (4.77-6.33 GHz), average antenna gains of 2.9 and 3.5 dBi, respectively, and also monopole-like radiation patterns. These properties make the antenna suitable for 2.4/5.2/5.8 GHz WLAN applications.  相似文献   

19.
李晓东 《电子科技》2013,26(10):142-144
提出了一种新型的用于WLAN/WiMAX通信系统的双频带印刷单极天线。通过改进的叉子形的辐射贴片,使天线在2.4 GHz频带内谐振。同时,在介质基板背面的引入寄生辐射贴片,利用与正面的辐射贴片的耦合效应,使天线谐振在5 GHz频带内。最终使得天线可以覆盖2.4/5.2/5.8 GHz WLAN 和5.5 GHz WiMAX频带。对加工后的天线模型测试表明,天线在工作频带内具有较好的全向辐射特性和可观的增益。因此,该天线在无线多频带通信系统中具有广泛的应用前景。  相似文献   

20.
The authors propose the design of one radial line slot antenna with two simultaneous beams, one broadside beam and one conical beam. The antenna is a radial line slot antenna (RLSA), with the slots placed on the upper plate in concentric rings. The radiating element is a slot pair, designed for getting left hand circular polarization. The antenna has been designed to work in the range of 13.4 GHz and 14 GHz. Both beams are obtained independently through very simple excitation circuits, realized with microstrip technology. These feeding networks include a Butler Matrix Network. Comparing both radiation patterns, amplitude and phase, theta and phi angles of arrival direction can be obtained. This monopulse performance can be used to orientate the pencil beam for satellite communication antennas. Measurements for a first prototype are presented to validate the design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号