首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Laser melt injection (LMI) was used to produce WC particles (WCp) reinforced metal matrix composites (MMCs) layer on the mild steel. During the LMI process, different parameters were applied, and the processing window of this technique was obtained. The MMCs layers were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The SEM result reveals that none macro-defects except few pores can be found in the MMCs layer, and the WCp distribute uniformly in the layer. In addition, some new phases can be found in the MMCs layer, where Fe3W3C is the predominant phase. At the same time, the amount of dissolved WCp plays a key role in the microstructure of the MMCs layer. The WC particle dissolved into the melt pool leads to the appearance of reaction products in the matrix, such as various primary Fe3W3C dendrites, and the liquid WC remained on the solid WC particle results in the formation of a thicker reaction layer.  相似文献   

2.
The laser melt injection (LMI) process has been used to create a metal matrix composite consisting of 80μm sized multi-grain WC particles embedded in three cast duplex stainless steels. The microstruture was investigated by scanning electron microscopy with integrated EDS and electron back-scatter diffraction/orientation imaging microscopy. In particular the search of the processing parameters, e.g. laser power density, laser beam scanning speed and powder flow rate, to obtain crack free and WCp containing surface layer, has been examined. Before the injection of ceramic particles into remelted surface layer, the influence of processing parameters of laser surface remelting on the microstructure and properties of selected duplex steels was also investigated. Although after simple laser surface remelting the austenitic phase is almost not present inside remelted layer, in the case of LMI the austenite was observed in vicinity of WC particles, due to increase of carbon content acting as austenite stabilizer. The diffusion of carbon in the reaction zone results also in a formation of W2C phase in the neighborhood of WC particles with a strong orientation relationship between them. The maximum volume fraction of the particles achieved in the metal matrix composite layer was about 10% and a substantial increase in hardness was observed, i.e. 575 HV0.2 for the matrix with embedded particles in comparison to 290 HV0.2 for untreated cast duplex stainless steels.  相似文献   

3.
The laser melt injection (LMI) process was explored to produce WC particles (WCp) reinforced Ti-6Al-4V metal matrix composites (MMC). In particular monocrystalline WC powder was used as injection particles to avoid the intercrystalline cracking often observed in granular or cast WCp reinforced MMC. WCp were injected into the extended part of the melt pool just behind the laser beam. The process allowed for the minimization of the WCp dissolution caused by the direct irradiation of the laser beam, and the decomposition reaction between WCp and Ti melt. Different parameters were applied, and a processing window of LMI was obtained. WCp exhibit a graded distribution along the depth direction of the MMC layer. New phases such as TiC and W2C are observed in the MMC layer, in which TiC is the predominant phase. TiC grains present a continuous decrease in both amount and size with the distance from the surface to the bottom of the MMC layer. Two types of reaction layers around WCp can be distinguished, namely an irregular reaction layer and a cellular reaction layer. The growth and final morphology of reaction layers are most likely being dominated by the composition of the neighbouring melt pool. A gradual hardness distribution in the depth direction of the composites layer is observed. Moreover, the transition from the MMC layer to the substrate also exhibits a gradual change in the hardness.  相似文献   

4.
5.
碳化钨增强钢铁基耐磨复合材料的研究和应用   总被引:4,自引:0,他引:4  
评述了制备复合材料的铸渗法、粉末烧结法、堆焊法、电渣熔铸法等工艺方法,以及碳化钨和钢铁基体的选择、界面反应和强度、复合材料的性能和应用现状.重点介绍了粘结剂、其他添加剂、碳化钨颗粒形状、粒度及其分布、浇注温度等对铸渗工艺及其表面复合材料的影响.阐明铸渗法是一种有前途的制备工艺,自蔓延工艺和铸造工艺的组合有可能取得新的成效.指出复合层厚度在10 mm以上的铸渗工艺,工程化和产业化关键技术以及复合工艺的稳定化是今后的研发重点,表面耐磨复合材料较适用于零部件的局部磨损和低角度的冲蚀磨损,应据磨损工况来选择制备工艺及其复合材料.  相似文献   

6.
不锈钢离子渗碳耐磨性的研究   总被引:3,自引:2,他引:1  
为进一步提高不锈钢的耐磨性以更好地适应既需耐蚀,又需耐磨的现代工业中.本试验用离子渗碳的方法对其进行了改性,处理后获得了无共晶莱氏体组织的均匀细小的碳化物,从而改善了组织,提高了性能.与滚轮淬火钢相比,其耐磨性提高了8倍.  相似文献   

7.
Titanium metal matrix composite coatings (MMC) are considered to be important candidates for high wear resistance applications. Laser cladding (LC) by coaxial powder feeding is an advanced coating manufacturing process, which involves laser processing fine powders into components directly from computer aided design (CAD) model.In this study, the LC process was employed to fabricate TiC particle reinforced Ti6Al4V MMC coatings on Ti6Al4V hot rolled samples.The experimental results show that during LC process, TiC particles are partially dissolved into melted Ti-base alloy and precipitated in the form of TiC dendrites during cooling.Dry sliding wear properties of these MMC layers have been compared with substrate materials wear. The observed wear mechanisms are summarized and related to detailed microstructural observations. The layers have been found to show improved tribological properties connected with the TiCp addition and the LC process parameters.  相似文献   

8.
增材制造技术(3D打印)是先进制造技术的重要发展方向,已经应用到航空航天、汽车工业、生物医学等重要领域中。自2004年首次剥离出单层石墨烯后,石墨烯等二维晶体材料逐渐成为了复合材料领域的研究热点。其表现出的优良力学性能及导电导热性使其更加适用于增强相材料。石墨烯与金属合金复合,通过调整石墨烯增强相的含量和分布,有望大幅提高金属基体材料的力学强度、导电导热等性能,获得性能优异的结构功能一体化材料。激光增材制造技术和石墨烯纳米片高比表面积和各向异性的优点相结合,对石墨烯与金属粉末进一步加工混合,再逐层打印构造3D 结构,已成为一个全新的研究方向,正在引领着第四代工业革命的进展。本文以激光增材制造技术为主体,从三个角度综述激光增材制造技术制备金属基石墨烯复合材料的研究进展,即激光增材制造技术制备石墨烯铝、镍及其他金属基复合材料,对比了形成工艺以及材料的性能,并分析了今后可能的发展方向。  相似文献   

9.
基于选区激光熔化技术(SLM),制备了BCC、FCC、FCCZ 3种不同拓扑单元的316L不锈钢多孔结构,验证了该技术成形复杂多孔结构件的可行性。对试样进行了准静态压缩试验,得到了多孔结构在压缩过程中的变形模式和力学响应曲线,对比分析了3种结构试样的力学性能。结果表明,FCCZ型多孔结构的抗压性能和能量吸收特性均优于BCC型和FCC型结构;利用ABAQUS/Explicit软件进行准静态压缩仿真,仿真结果和试验结果基本符合。  相似文献   

10.
Steel-matrix (105WCr6 steel) surface nano-composites with (Ti,W)C micron-sized and (Fe,W)6C nano-sized carbide precipitates were produced by in situ laser melt injection technology with subsequent heat treatment. The microhardness of a 1 mm thick nano-composite layer was found to be higher than that of the initial matrix. The machinability of the surface nano-composite by a cubic boron nitride (CBN) wheel was found lower, but still reasonable compared to the initial matrix. Cutting tools produced from our new nano-composite by the CBN wheel were found to have higher wear resistance, longer tool life and provided lower cutting forces against a C45 steel workpiece compared to the initial matrix of the nano-composite.  相似文献   

11.
采用激光熔覆技术制备FeCrNiCoMnB_x高熵合金涂层,研究了硼含量对激光熔覆FeCrNiCoMnB_x高熵合金涂层的组织结构、硬度和摩擦磨损性能的影响,以及硼化物中层错形成机制。结果表明:涂层均由简单fcc结构固溶体和硼化物两相组成。当硼含量x≤0.75时,生成的硼化物以(Cr,Fe)_2B相为主;而当硼含量x=1时,生成大量的(Fe,Cr)_2B相。随着硼含量的增加,涂层中的硼化物含量增加,硬度增大,耐磨性能增强。硼化物(Fe,Cr)_2B相在(110)面存在大量堆垛层错。硼化物中的层错是(Fe,Cr)_2B相通过(110)面的层错(滑移距离为1/4[111])方式而向(Cr,Fe)_2B相转变而产生。  相似文献   

12.
Surface modification is an attractive method to enhance the surface hardness and wear resistance of titanium. In this paper, a continuous wave 2 kW Nd:YAG laser was used to synthesize Ti/TiN metal matrix composite coating on the surface of commercial pure titanium. The microstructure and the wear resistance of the synthesized metal matrix composite coating were investigated. The synthesized surface Ti/TiN metal matrix composite coating had a pronounced gradient microstructure through the melt depth. Good metallurgical bonding between the reinforcing phase of the metal matrix composite and the titanium matrix was observed. The hardness and wear resistance under block-on-ring dry sliding wear testing conditions of the synthesized Ti/TiN metal matrix composite coating were markedly enhanced.  相似文献   

13.
Large WC particles (− 840 μm-+ 420 μm) reinforced surface metal matrix composites (SMMCs) were produced using plasma melt injection (PMI) process on a Q235 (similar to ASTM A570 Gr. A) low carbon steel substrate. Microstructures of the SMMC were observed using scanning electron microscope (SEM), and the composition was determined with energy dispersion spectroscopy (EDS). Phases were analyzed with X-ray diffraction. Micro-hardness of the SMMC was tested. Wear losses of the SMMC layer were evaluated under dry friction conditions and compared with those of the substrate material. The results show that the large WC particles are caught by crystallized metal and stay in the upper part of the SMMC layer, and there is only a little melting on the outer surface. No sinking down of WC particles occurs. The SMMC layer is well bonded to the substrate, and the interface is crack free. The wear resistance of the Q235 substrate is greatly improved with large WC particles injected.  相似文献   

14.
Titanium carbide particles reinforced Fe-based surface composite coatings were fabricated by laser cladding using a 5 kW CO2 laser. The microstructure, phase structure and wear properties were investigated by means of scanning electron microscopy, transmission electron microscopy and X-ray diffraction, as well as dry sliding wear test. The results showed that TiC carbides were formed via in situ reaction between ferrotitanium and graphite in the molten pool during the laser-clad process. The morphology of TiC is mainly cubic and dendritic form; and the TiC carbides were distributed uniformly in the composite coating. The TiC/matrix interface was found to be free from cracks and deleterious phases. The coatings reinforced by TiC particles revealed higher wear resistance and lower friction coefficient than that of the substrate and FeCrBSi laser-clad coating.  相似文献   

15.
The results for laser shock peening of duplex stainless steel (22% Chromium-5% Nickel) using a pulsed Nd:YAG laser (wavelength = 532 nm, pulse width = 8 ns) for the application to high-capacity pumps for reverse-osmosis type seawater desalination plants are reported. By properly selecting the process parameters such as laser intensity of 10 GW/cm2, laser pulse density of 75 pulse/mm2, and 100 μm thick aluminum foil as a protective coating layer, wear volume and corrosion rate of duplex stainless steel could be reduced by 39% and 74.2%, respectively. The number and size of corrosion pits produced on wear track during copper accelerated acetic acid salt spray test decreased approximately by half as a result of laser shock peening. It is shown that laser shock peening is a practical option to improve abrasion and corrosion properties of a seawater desalination pump parts.  相似文献   

16.
Plasma nitriding is a widely used technology to enhance the surface performance and extend the service life of alloy parts.The current research mainly focuses on the influences of time, temperature, gas type and pressure parameters on nitriding behavior, while fewer studies have been conducted on the electric potential. This paper mainly reports the effect of the electric potential on nitriding behavior. Test conditions were set using cathodic, anodic and floating potentials in a plasma nitriding furnace. 2Cr13 stainless steel was nitrided at 450 °C for 5h in an NH_3 atmosphere. The experimental results show that the nitriding treatment can be well performed under the different electric potentials, but differences exist in microstructures, morphologies and performance results of the modified layers. The thickness and hardness values of the nitrided layer are ranked as follows: cathodic [ anodic [ floating potential. The anodic nitrided surface has an obvious particle deposition layer composed of nitrides and oxides. Electrochemical and tribological experiments show that the corrosion resistance and wear resistance were significantly improved after a nitriding treatment using the three electric potentials. Moreover, the floating nitriding treatment resulted in the best tribological performance and corrosion resistance.  相似文献   

17.
为研究铸造碳化钨粉末物性对激光熔覆陶瓷颗粒增强Fe基复合材料耐磨性能的影响,将不同制备方法和粒径的铸造碳化钨粉末添加到Fe基合金粉中,在45号钢表面进行激光熔覆以获得高硬度和高耐磨的合金化层。利用金相显微镜、扫描电子显微镜(SEM)、X射线衍射仪(XRD)、硬度计分别分析了合金化层的显微组织、物相组成以及显微硬度。利用轮式磨损试验机测试了其常温下的耐磨性能,并进行了比较。结果表明:熔覆层主要由莱氏体组成,碳化钨粉末的制备方法和粒径差异对复合材料的耐磨性能具有重要影响。等离子旋转电极雾化法制备的碳化钨粉末能起到最好的增强耐磨作用,粒径细的碳化钨粉末比粒径粗的粉末增强耐磨效果要好。  相似文献   

18.
目的 提高奥氏体不锈钢的耐磨性.方法 采用电镀法在304奥氏体不锈钢表面进行镍涂层预处理,然后在450℃及以下,于流动的高纯度NH3中进行气体渗氮,获得复合表面处理试样.使用扫描电子显微镜、X射线衍射仪和显微硬度仪,研究了渗氮层的组织、相组成和显微硬度.使用球盘式摩擦磨损试验机,选用硬度相差很大的两种材料GCr15和S...  相似文献   

19.
Composite coatings containing aluminum and aluminum-11.6 wt.% silicon eutectic alloy phases of varying compositions were fabricated using cold spraying. Coating contained a uniform distribution of the two phases. The hardness of the coatings increased as the volume fraction of Al-Si in the coating increased. The length to width ratio of the splats was found to be larger for Al particles compared to Al-Si particles. Dry sliding ball-on-plate wear tests indicated that the wear volume loss was similar for the Al and Al/Al-Si composite coatings in spite of the increase in microhardness. This discrepancy is explained by the inter-splat delamination mechanism. The coefficient of friction of aluminum coating reduced on Al-Si addition.  相似文献   

20.
A new Al383/SiO2 metal matrix composites (MMC) was designed to improve the wear properties of the aluminium (Al) alloys with manufacturing cost much lower than the hypereutectic Al-Si alloys. However, like the hypereutectic Al alloys, the MMC was also subject to large plastic deformation of the soft Al matrix under high contact stress during lubricated sliding wear tests. As a result, the reinforced SiO2 particles detached from the matrix and promoted the third-body wear. In this paper, to improve the wear performance of the MMC under high contact stress but also to avoid the honing process, a new proprietary approach based on a modified Plasma Electrolytic Oxidation (PEO) process was used to produce oxide coatings on the MMC. The effect of both oxide coating thickness and the volume content of SiO2 particles on the wear behaviour of the MMC was investigated. It was found that with a proper combination of the volume content of SiO2 and coating thickness, the coated MMC presented a much higher wear resistance and lower friction coefficient than the uncoated MMC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号